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Preface

This is a collection of lectures delivered at the Universidade
Federal de Pernambuco, Recife, Brazil, between 2 November 1981 and 2
December 1981. The visit to Recife was a response to an invitation of
Professor Gilberto F. de S& of the Physics Department. In the prepara-
tion of these notes I made many requests of the research workers still
at HDL for earlier results and recollections of our early work. Among
those most frequently consulted were Donald Wortman and Nick Karayianis
and I wish to thank them for their prompt responses and their valuable
suggestions. The later work and a critical reading of the entire rough
notes of the lectures were done by my coworker Richard P. Leavitt. To
him I owe a special thanks for numerous helpful suggestions. A number
of suggestions from my Brazilian colleagues helped make the lectures
more clear. Particular among these were Professor Oscar Malta and
Professor Alfredo A. da Gama both of whom I wish to thank for their
help. I would also like to thank Evandro J. T. de Araujo Gouveia for
his suggestions and finding errors in the notes. In all of the efforts
to make the lectures more complete I owe special thanks to Professor
Gilberto F. de SA. Lastly I would like to thank the entire physics
department at the University of Recife for making our stay in Recife a
warm and pleasant experience. Both my wife and myself have never before
experienced such a pleasant display of hospitality. To all the members
of the physics department my wife and I say "muinto obrigado."
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1. INTRODUCTION

The work at the U.S. Army Harry Diamond Laboratories (HDL) on the
experiment and theory of rare-earth ions in transparent hosL materials
was begun in the early 1960's. This was after workers at Bell Telephone
Laboratories (Johnson et al, 1962)* demonstrated the first continuous
operating laser using neodymium (Nd) in calcium tungstate (CaWO 4 ). It
was decided at that time that the HDL group would concentrate on
Nd:CaWO4 . The group was limited in number at any given time, but over
the span of years many research workers were participants. A list of
publications pertinent to the theoretical analysis and experimental work
on triply ionized rare-earth ions in solids is given in the annotated
bibliography.

The plan that the group was to follow during the first two years and
still follows is the following: (1) As many as possible of the rare-
earth ions were to be doped into the host material CaWO 4 , and the opti-
cal data were to be carefully recorded. (2) These data were to be
analyzed by any techniques existing in the literature or developed at
HDL to obtain phenomenological crystal-field parameters. (3) A theo-
retical derivation of the crystal-field parameters was to be developed
which gave not only the parameters which were obtained from the experi-
mental data, but also a set of odd-k crystal-field components. (4) The
odd-k crystal-field components were to be used to calculate the electric
dipole transition probabilities using the theory of Judd (1962) and
Ofelt (1962)o

As of 1970, all these objectives had been met for CaWO4 (and conse-
quently to a lesser extent for any solid where the rare-earth ion occu-
pies a site of S 4 symmetry). Daring this time, a number of new theories
as well as significant modifications of existing theories were devel-
oped. The most important theory thus developed was the HDL three-
parameter theory of crystal fields. This theory was a blending of the
much older point-charge model, including the effects of covalency and
wave-function expansion and screening of the field of the point charge.
These effects were encompassed in the three parameters, and a consistent
set of these parameters was found for the triply ionized rare-earth
series in the host CaWO 4V The phenomenological crystal-field parameters
used in the development of the theory were those obtained by using an
effective spin-orbit Hamiltonian developed by Nick Karayianis at HDL.
The optical data were taken by Donald E. Wortman and Ruben T. Farrar of
HDL.

*Because of the large number of literature citations, these are given

in abbreviated form only, not footnoted on each page. Complete liter-
ature references are given alphabetically by author in the Literature

Cited section.
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Since 1970, a number of new additions have been made in the theory,
and the ability to analyze the optical data has been achieved. These
inclu'ee:

(1) The development of lattice sums (point-charge model) for any
crystalline solid (230 different space groups).

(2) The self-consistent inclusion of the dipole fields for any
crystalline solid.

(3) The calculation of the phenomenological crystal-field param-
eters from experimental data for any solid having point sym-
metry higher than C1 or C•.

(4) The calculation of transltion probabilities, Zeeman splitting
factors, Judd-Ofelt intensity parameters, branching ratios, and
lifetimes for any point symmetry higher than C1 or Ci.

Of the recent work at HDL done on rare earths, the most significant
is the work done on rare-earth ions in lanthanum trifluoride (Ln:LaF 3,
Ln=rare-earth ion) (C2 symmetry) and reported in two papers. Morrison
and Leavitt (1979) reported an analysis of the low-temperature optical
data which had been previously reported by workers in other laboratories
(very much by W. T. Carnall of Argonne National Laboratory). In our
analysis, the point-charge lattice sums were used to obtain starting
crystal-field parameters in a least-squares fitting. Consequently, sets
of crystal-field parameters for almost all the rare-earth ions were
obtained which were consistent through the entire series. In the second
paper (Leavitt and Morrison, 1980), the results of the lattice sum for
the odd-k crystal-field components were used to calculate the Judd-Ofelt
intensity parameters and lifetimes for the entire rare-earth series.
Wherever possible, these were compared to experimental data, and the
agreement was found to be very good.

At present, with J. B. Gruber and N. C. Chang, we are analyzing data
on triply ionized rare-earth ions in yttrium oxide (Y2 03 ). This mate-
rial has two types of sites that the rare-earth ion can occupy, C2 and
C.i. A paper on "The Analysis of the Spectra of Kramers Ions in the C2
Sites" has been published (Chang, Gruber, Leavitt, and Morrison, 1982).
A second paper, "Optical Spectra, Energy Levels, and Crystal-Field
Analysis of Tripositive Rare-Earth Ions in Y2 0 3. II. Non-Kramers Ions
in C, Sites" has been published (Leavitt, Gruber, Chang, and Morrison,
1982?. We are now writing a third paper on the rare-earth ions in Y203
for the rare-earth ions in the C31 sites. This latter paper also w11
summarize all the work on C2 sites.

If we find time and money, we intend to extend our computation
ability to incorporate more of the free-ion interactions. Also, we
would like to incorporate in our programs many of the theories that we
have developed at HDL over the last few years. The inclusion of the
self-consistent dipole contributions to our theory of crystal fields
should improve both the energy-level calculations and the transition
probabilities.

10
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2. ANGULAR MOMENTUM ALGEBRA

2.1 Angular Momentum Operators

In classical mechanics, the angular momentum of a particle is

defined by

+ p . (1)

Actually, we should specify that the angular momentum so defined is
about a particular origin, and r is the vector distance from the refer-
ence poiut to the particle with momentum p.

If we use the commutation relations

[xiP1] = i¶6 ij (2)

with xi = x, y, or z, then we can obtain the commutation rules for
angular momentum,

[Xx 1 = i- [t ,t ] = oix¶ and [yfx] = ily (3)

which are the basic commutation rules for the Cartesian components of
the angular momentum. For convenience here we shall drop the 1 in the
commutation relations. This does not mean that we drop fi throughout; vTe
restore 41 simply by writing the interactions involving the angular
momentum so that the fi is contained in the constants. As an example of
this, we consider the spin-orbit Hamiltonian

"H 1 1 au (4)
2 2m 2 c 2 r ar

with t and s (the spin angular momentum, S, we will discuss later)
containing -i as in equation (3). When written in terms of unitless
and s, we have

H - 2  
1  (5)

2 2m 2 c 2 r r

where t and 4 obey the commutation rules in equation (3) but - = 1.
/

to OF r our purposes here, we want to ase the spherical represen-
" tation of ,which is given by

X+1 (X x + ity)
S€2

0 ' (6)

-1 - iy%

- .. . . . . - -x



and the commutation rules are

[e 0'+1] = +1 '

[£ 1 £0 X -1 ( 7)

[ 1 1 = -o0-

The eigenfunctions of the angular momentum are the spherical
harmonics, Y m(8,0) and

£zlIM> = mum> (8)

-. _I r(XTm)(jtkm+1)]I/2 IL;m±1>

where

iwm> = Y9m (610)

Frequently, we shall use the unit vector r to indicate the argument
of Y.1 thus:

Yxm(OO) = Yxm(r)

When the Y are wave functions such as in equation (8), we have

Ytm(r) = Irn>•

The wave functions have the property that

<x'M'Ixm> = 6It, 6mm •

Further, we shall assume that the spin angular mcmentum, s, obeys the
same commutation relations as equation (7); che two-component spinor
wave functions are represented by the wave function lam s>, so that the
single electron wave function for orbital and spin angular momentum is

Itm> 9>Ismis > • (9)

The wave functions given by equation (9) then obey the following:

1 0 I lmt I >sm > = maP. i 'm9. I >Insms>,tlm>s> mm>l 5 I (10)

(j)21jm >Isms > = ±(*41)lmI >Isms >

12



Sitm t>Ism > = ms Ifmt>Isms>

(s) 2 1Im >;sms > = s(s+1)Itm >Isms>

where, of course, s = 1/2. A further property of the spherical har-
monics is

lYLm(r) =mr)A (11)

where the inversion operator is Ir -r, a property that will be used
frequently in our analysis. While many of the interaction terms of the
Hamiltonian were derived by using spherical harmonics, it is convenient
to introduce the tensor operators

Ctmlr) = 1 Ytmlr) (12)

Since Ytm(r) = (- 1)my ,-m(; , we have

C X(r) = (-1)mc 1,-m(r) •(13)

The use of C rather than Y in the interaction terms eliminates
almost all the factors of 41,. In example of this is the coupling rulefor spherical harmonics (Rose, 1957: 61):

Y Y F(2k+1)(2_n+1) 1/2
Zkq nm = L" 4w(2£+t I

S(14)

x <k(O)n(O)I£(O)><k(q)n(m)12(q+m)>.,q+m

but

C Ckq Cnm <k(O)n(0)1£(0)><k(q)n(m)lt(q+m)>C ,q+m (15)

In equations (14) and (15) all the tensor operators have the same argu-
ment.

2.2 Clebsch-Gordan Coefficients

For our purpose, it is convenient to define the Clebsch-Gordan
(C-G) coefficients as the coefficients in the transformation from two

13
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angular momentum spaces, say, I and s, to form the composite space
That is,

jjm> = <X(P)s(m-P)jj(m)>j£P>js'm-P> ,(16)

where the quantity <X(U)s(m-U)Ij(m)> is a C-G coefficient. Since we
wish to have ortkbonormal basis, we have

<j'm'Ijm> 6 j 6m
"'5' (17)

< t N£ ( s (m -t) i Wm > <X (1 s )(m -11 ' J' (m')>

since

<xP'I£U>= 6 and <s,m'-p'Is,m-P> = m. (18)U11 m- 1, ,m - 1

Thus, we have

6.., = <£(j)s(m-jilj(n)><(U)s(m-j)Ij'(m)> , (19)

an important and very useful result. If we assume (correctly) that the
same coefficients connect the j space to the i and spaces, we can
obtain another condition on the C-G coefficients, namely,

6 s <£(m£)s(ms) J (m+ms)>< '(m.)s <ms) J(mx+ms)> (20)
J

Some other relations among C-G coefficients are

<a(a)b(P)Ic(y)> = 0 if ial > a, or 181 > b, or i7I > c

and if y 0 a + •

The C-G coefficients vanish unless the three angular momenta obey the
triangle condition, or ja - bi j c S a + b and any permutation of a, b,
or c. Further properties Df the C-G coefficients are given in appendix
A.

The commutation relations for the spherical components of the
angular momentum of a single electron given in equations (7) and (8) can
be written compactly in terms of C-G coefficients as

[ It 2<=)(j~1pv> (7a)
1j+V

14



and

a[s,s] P / <l(v)1(u)I1(u+V)>s8+v (8a)

The total angular orbital momentum operator for a system of N electrons
is

N

i

and the total spin angular momentum operator is

N
S=Is (i) . (22)

i

The spherical components of these operators obey the same commutation
relations as equations (7a) and (8a), or

[L ,LV] = /" <l(v)l(u)l (u+V)>L +V (23)

and

[S ,S,] = /<1(v)1(()I1()I+v)>S +9 • (24)

Also, it should be noted that

[L ,£1(i) = M] '2 <1(v)1(p)I1(u+v)> j+V(i) (25)

and

[SP ,sV(i)] = <1(v)1(u)l1(u+v)>s +V(i) (26)

Consequently, from using equations (23) through (26), we have

[LLuCkq(i)] = /k--+1) <k(q)l(p)jk(q+p)>Ck,q+U(i) (27) //

S" [Ji Ckq(i)] = [L1iCkq(i)] (28)

with

= + (29)

15
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2.3 Wigner-Echart Theorem

The Wigner-Echart theorem states that if we have a spherical
tensor T- in the space spanned by the wave functions IJM>, then theKq
matrix elements are

<J'M'ITkIJM> = <J(M)k(q)!J'(M')><J'ITk J> ( (30)

The projection (q) dependence is contained in the C-G coefficients, and
the factors <J'IT kJ> are called the reduced matrix elements.

k

If we have a mixed spherical tensor, rank K, projection A, in
spin space and rank k, projection q, in orbital space, the Wigner-Echart
theorem then is

PKk<L'M'S'M;IT ILMS>
L )q ML SM

<L(M )k(q)L'(Mj)><S(Ms) (X) I S'(M')> (31)

ick
x <L'S IT ILS>

Since the C-G coefficient is purely a geometrical factor, all the phys-
ics is contained in the reduced matrix element. The Wigner-Echart
theorem allows the extraction of the geometrical factors from many
complicated matrix elements; it also serves as perhaps the main motiva-
tion for the development of Racah algebra in dealing with angular momen-
tum states.

Because of the power of the Wigner-Echart theorem, it occurred
to Racah to cast the various operators representing the interactions in

terms of universal quantities that could be tabulated for a frequently
used many-particle system. Toward this end, Racah introduced the unit
spherical tensors for the electronic configuration nXN which we define
as

<'m'lUkqI 1m> = <1(t)klq)lX(m')>6tit,

for the orbital space and

<1'm, s~miI •kllmsms>

= <L(m)k(q)jX.(m')><s(m5 )K(X)Is(MS)> (32)
I ~x6 6,6ss

Xt as,

for orbital and spin space.

16



The generalization to an N-electron system is simply

N
Ukq = : Ukq(i)

. vKk v Kk i(. 33)
Xq XqV(ql

A simple and often used example of these tensors in orbital space is (we
shall omit the upper limit on the i sum in the remainder of the discus-
sion)

Sckq (i) = m <tiCk 11>u kq)

(34)
= <tic k i0>Ukq

where

<tiC k -- <1(O)k(O)I1(O)>
L

I L = fullC)

= I <Iit >Uu (i) (35)

= <1itI>U1 , and

An example of a tensor in a mixed spin and orbital space occurs
in the hyperfine interaction H5 , given by

" 5  (288N/I) i/r (36)l ~i .

where 8 is the Bohr magneton, $N is the nuclear magneton, uN is the

nuclear moment, and I is the nuclear spin. Now

-i Si + 3ri,(r~i-s)/r2 (?
Ni = (ii. / 37)

17
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r r• " -l,*•-- • T ' r " ... . r .. •" r - -... "- ' •

or

Nq(i) = qi) - M10 z <1(v)2(q-v)ll1(q)>sV(i)C 2 ,qvv(i) (38)

(we shall show later how eq (38) is obtained from eq (37)).

The part of N,(i) containing £0 (i) can be written in terms of
Ul1q as in the second part of equation (15):

Ss (i)C2,_(i)
sV Uc2,q-v()

i (39)

<sflsfls><1C' j2X>V1 2
2 vq-v

A component of N = Ni can be written
1

Nq = (T- +1) Vlq - / -10 (s(s+1)< X(0)2(0)Ij(0)>
q (40)

x I <1(v)2(q-v)I1(q)>V1 2

V V1,q-V

Thus, equation (36) can be written

H= (2001/r 3> N 1* (41)
q q

with Nq given by equation (40).

2.4 Racah Coefficients

The Racah coefficients arise in the coupling of three angular
momenta (Rose, 1957: 107) to form a final resultant. In the coupling of
the angular momenta, we consider two coupling schemes:

scheme A: 11 +•12 = 112' 112 + 13 - 1 (42)

scheme B: +1 3 = '13' 113 + 1'2 = 1 (43)

Coupling scheme A is represented by the wave function

IA> <jm+; IA> = [ < j (ml) j2 Im2)'2 1 j 2m+2)><J12 (ml+m2)J3 (m3) Ij (m) >
1 2 (44)

x,- ,.1ilml~j2 m2 jt3 m3 > i

scheme B is represented by the wave function

18

Si



PRIM--

•IB> = [ tjl(m 1 )j 3 (m3 )tjl 3 ( 1  3 )1J 13 (ml+m3 )j 2 (m2 )IJ(m)>
mIm 2 m3  (45)

x lJlmlJ 2 m2 J3m3 >

The t-.norting schemes A and B are connected by a unitary transformation

IB> I <AIB>IA> , (46)
, A

the coefficients of the unitary transformation are determined by taking
the inner product of equation (44) with equation (45).

We define the Racah coefficients as follows:

W(j[j22jl3J3 2JJ,) <AIB> (47)
((2jI 2+')(2jI 3 +l')11/i

Thus,
[(2 j12+1 )(2J13+1)])1/2 w(j2jl2jl3j3; l)

m <J 1 (m1 )J 2 (m2 )IJ 12 (m1+m2 )><j 1 2 (m1 +m2 )j 3 (m-ml-m 2 )lj(m)> (48)mlm2

x <j 1 (m1 )J 3 (m-m 1-m2 )1J 1 3 (m-m2 )><J 13 (m-m2 )J 2 (m2 )lj(m)>

The following equation can be obtained from equation (48):

<J 2 (m2 )Jl(ml )1J 1 2 (m 1+m2 )><J 1 2 (m1*m 2 )j 3 (m-m1-m 2 )lj(m)>

i ((2J 1 2 +1)(2j 1 3 +1)]1/2 W(j 2 JIJJ 3 ;J 1 2 J1 3 ) (49)

x <jl(ml)J 3 (m-ml-m 2 )1J 1 3 (m-m2 )><J 2 (m2 )J 1 3 (m-m2 )lj(m)>

which is a relationship used often in our analysis.

The Racah coefficient is related to the symmetrized "6j" symbol
by the following equation:

W(abcd;ef) a+b+c+d fa b el (50)S•d c f "
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Certain symmetry relations exist for the "6j" symbols:

iiJ ~ 2 J31 . fJ2  1 31.j11J3J21,(1 12 31 (51)
£1 92 £3 J 2 9 1 3 ) 1 X 3 J92 X1 J2 J31

and all combinations of the relations in equatiun (47). The four triads
(J, J2 J31' (Jl 1• 13), (11 J2 13) , and (1 12 J3) must be able to form

a triangle. That is,

IjI-J21 < j 1 +J2, (52)

with similar relations for the other triads.

An example of the use of Racah coefficients is in the calcula-

tion of single-electron matrix elements of the operator

E = [ <k(q-X)1(A)Ik'(q)>C k,qXA , (53)

which arises in numerous applications. We consider the matrix element

<Xlm'IEkeq 1W> = <1(m)k'(q)IL'(m')><V'IE kIi> (54)

by application of the Wigner-Echart theorem, equation (30). Also, by
taking the same matrix element of equation (53) we have

<Y'm'IE k~q m I W <k(q-X)1(X)Ak'(q)><X'm'ICk,qPA Ijem> (55)

Now we further consider the matrix element in equation (55) to obtain

<Z'm'IC I jXm> Y <t'm',. IIhmh"><th"m"IIIm> (56)
kq-"X k'q-Am ,

where we have used matrix algebra on the product of two operators. If
we apply the Wigner-Echart theorem to the last matrix element in equa-
tion (56), we obtain

<i "ml £l, . '> A < (m )l(A .)l "(m" l>6 L £..< 1t ..l > ; (57)

also, m" =m + A as required by the C-G coefficient. It can be shown
that

<t1£1£> = v'i(L+1) . (58)
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Then,

< X,,m,, • I I( (, ( A j(59)

Using these results in the remaining C-G in equation (56), we have

<XMC lk,qX X(m+X)> = <1(m+X)k(q-X)jX,(m')><V'k tlk> . (60)

Substituting the result of equations (60) and (59) into equation (56),

we have

Sm'/C k,qX X lpm> = •1(.t+1)<tvflCkt><t(m)1(A)L(m+))>
(61)

x <X(m+X)k(q-X) I ' (m') >,

giving the matrix element in equation (55). If we substitute the result

of equation (61) into equation (55), then we have

<W'm'IE kIq m> = V'(x+1) <£'ICk 01>S , (62)

where

S = [ <k(q-X)1(dIk'(q))<t(m)1(X)It(m+)><Z(m+X)k(q-)i£'(m')> • (63)

The last two C-C coefficients in equation (63) can be recoupled by using
equation (49) or

- <t(m)I(•) jL(m+A)><t(m+)•)k(q-X) It' (in')>

= 1 • (2f+1)(29+1) W(£1£'k;Xf)<£(X)k(q-X)If(q) (64)
f

x <X(m)f(q)j'(m'1)>

The C-G coefficients in equation (64) can be rearranged by using the
symmetry rules to Lyve

1+k-f
<1(X)k(q-X)If(q)> - (-1) <k(q-X)1(X)If(q)> . (65)

This C-G coefficient and the first C-G coefficient in equation (63) are
the only two C-G coefficients containing X, so that

S<k(q-X1(X))Ik'(q)><k(q-X)1O()If(q)> 6fk, (66)
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because of the orthogonality, as shown in equation (19), of the C-G
coefficients. Thus, we gct

S = (-1) 1+k-k' (2k'+1)(2+1) W(t1X'k;Rk')<1(m)k'(q)It'(m')> , (67)

which when substituted into equation (62) gives

<c'm' IE k~qtW> - (-1) 1+k-k' V(X+1)(2X+1)(2k,+1) W(X1£'k;£k')<V'lCk 1Y>

Sx <t(m)k' (q) I£'(m')> * 68

Upon comparing the result given in equation (54) with equation (68), we
have

<111 Ek11> = (-1)l+k-k'[E £(t+l )(2t+I)(2k'+I)I /2 <t'.CkI t> (69)

x W(£11'k;tk')

which is a useful relation if we wished to express the tensor Eklq in
terms of unit spherical tensors; in that case we would specialize equa-
tion (69) to £, - £ and simply replace Ckq in equation (34) by Ekq with
the reduced matrix element given by equation (69). We shall have fre-
quent occasion to express our results in terms of Racah coefficients by
using equation (49).

2.5 Racah Algebra

It is convenient in many vector problems to express the vectors
in terms of spherical bases given by

A,
.1 x " i1yyV

(70)

Then e* (-1) e-,i

/

e x e = -iV2<1(v)1(p)1(v+v)> , (71)

The vector A can be written
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A = e*A
Su(72)

e A-

and

A MB

A B*
V 11 (73)

( ) 1-I) A B

Thus, tos in equation (5) can be written

t.= js (74)

so that the spin-orbit interaction given in equation (5) is immediately
in spherical tensors, since 1 and s are spherical tensors.

As an application of Racah algebra and some of the other mater-
ial discussed above, we shall derive the gradient formula (Rose, 1957:
120). A convenient form for the gradient operator is

V x r--(75)3r r

and we would like

grad o(r)Ckq(r) [V,ýIr)Ckq] . (76)

First we observe that

rckq (-1) e)• C1Ckq

S[ (-1)e~ <()k(O)klk(O)><l( )k(q)lk(q+)>C, , (77)
,•; X,k'
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where we have used the coupling rule for spherical harmonics, equation
(15) (Rose, 1957: 61). Now we write

c BA A

r x = (-1) e xeC e1. 1 (78)

we use equation (71) to eliminate the cross product to produce

r x = -1/ 7 (-1) <1(X-a)l(Q)I1()>eXCl1-a , (79)

where we have replaced the sum on 8 by letting 8 = - a. Now in calcu-
lating the commutation we need only consider the operators in equation
(79); thus, we need

[c 1 _ a2 .jXCkq] • (80)

Since O(r) commutes with C1 a. , we need not consider it at present.
First we expand the commutator 'o obtain

[CI_ 'aXCkq] = Cl_ a'aCkq - CkqC1_ 'a ; (81)

we then use

X aCkq = [x _,XICkq] + Ckq£ _a (82)

in equation (81) to obtain

[C1_a'a-XCkq] = Cl-a[£aXCkq] ' C1,_Ckqa _X - CkqC1 _.x (83)

The last two terms cancel since Cl_, and Ckq commute. Thus, we obtain

[Clala-,ICI.q] = Cl_[taXICkq] (84)

= 1 _a k q a--k-+ <klqI1a-Wlk(q+a-X)>Ck~~ _ (85)

where we have used equation (27) with L, = X,-x (which are identical

in the commutation brackets). The result in equation (85) is not quite
in the form we want, but by using the coupling rule for spherical har-
monics given in equation (15), we finally obtain

[C1_Q-a')tCkqj = rkk+ <k(q)1(a-A)Ik(q+*-X)> (86)

x I <k(0)1(0)Ik"(0)><k(q-a-X)1I(-a)Ik"(q-X)Cki,q A .

k2
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In equations (75), (76), and (79), we need

[rxti kq] , (87)

we can see from equations (86) and (79) that, when this is formed, the
terms dependent on a are

S = X
a (88)

x <k(q+X-a)1(-a)lk"(q-X)>

that is,

[rxtck = i", " (-1) e <k(0)l(0)lk"(O)>Vk-(k+l)

(89)
X SCk,,,qX

with S given by equation (88). The sum, S, given by equation (88) can
be reduced. First we write

(90)
r (-2f+-l)(2k-+1) W(klk"1;kf)<1(a-X)1(-a)lf(-X)><k(q)f(-x)lk"l(q-X)>,

f

where we have used equation (49). Thus, the sum over a contains the
terms

[~~~~~~~~ <!uXl-~l-,)<(-,l-)f-) fl (91)

by the orthogonality of the C-G coefficients. We can use equations (91)

and (90) in equation (88) to obtain

S -'3(2k-+i W(klk"-;kl)<k(q)1(-Xflk"(q-))> . (92)

Using the results of equation (92) in equation (89) gives

S[ kq] = iV6k(k+1)(2k+1) I (-1)<el [ <k(0)1(0)Ik(0)>W<k1k"1;k1>

S~~x <k(q)1(X) Ik"(q+X)>Ck,,+ (93)
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where we have changed the sign of X in the sum. Multiplying the results
given in equation (93) by -iý(r)/r and combining them with equation
(33), we have (changing k" to k')

[V,D(r)Ckq] = (-1) e + -v'6k(k+k)(2k+1) W(klk'1;kl)
A k ' 

J

(94)
x <k(0) I(0) Ik' (0)><k(q) I(X) Ik' (q+X) >Ck. ,q+X

The Racah coefficients in equation (94) are of simple form and are given
by Rose (1957: 227). These are

W(klk'l;kl) [6(k+1)(2k+1) k' =k + I

r l 1 /2 (95)

- k 2k+I) ] 1)k'j k - I

which are the only values of k' allowed. These results used in equation
(94) can be written as

A^ k'[V,O(r)Ck = [ (- 1 ) e_ <k(q)1(X)Ik'(q+X)>Ck,+ ý(k ) (96)
L kqJ -k k~ *(

where

D - - , k'= k + 1 , (96a)
vi2k+ I ar r,

Dk' ( + k+1) k' - k 1- (96b)

and we have used the result

<k(0)1(0)Ik+1(0)> = k" and=V2-- k::

<k(0)1(0)Ik-1(0)> = - 2•+1

(from Rose, 1957: 225). The two most common forms of 0(r) that we will
encounter are rk and 1/rk+l For *(r) = rk , we obtain

[V ,rkCk] = - '-k(2k+1) <k(q)1(U)jk-1(q+p)>r k-lC, (97)
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and for * 1/r+I

[v,1/rk+lCkq] -ik+)(2k+l) <k(q)l((j)lk9l(q+8)>l/r+C[VI, q k~lq~u(98)

The results given in equation (98) are easily checked for k 0, since
for k - 0 we have

• ~~[V, 1/r] -- -<o(q) 1(p) 1 !(q+v,)> 1/r2C1 (98a)

and from the properties of the C-G coefficients, we know that q - o
and <0(p)1(u)j1(,)> = 1. Then

[VVI/r,Clq] -c,,/r2 •(98b)

Also, we know from vector analysis that

grad 1/r = 4 /r 3  (98C)

and

r = r I (-1P)eUCi 1 . (98d)

Then we substitute equation (98d) in (98c) to obtain

(grad 1/r)) = -C1 /r 2 , (98e)

which is identical with the result of equation (98b). We shall use the
result given in equation (94) frequently later on, particularly in the
form given in equations (97) and (98).

3. FREE-ION HAMILTONIAN

3.1 Background for Free Rare-Earth Ions

The approximations made in the analysis of rare-earth ions are
not new. In fact, they go back to the old Bohr orbit theory. Since
many of you may not be familiar with these assumptions and may not
remember many of the concepts and much of the technical jargon used in
the field of atomic spectra, I will review some of these briefly.
Although generalities may exist, I will stick strictly to those concepts
which apply to rare-earth ions or, more strictly, triply ionized rare-
earth ions. The triply ionized rare-earth ions are characterized by the
electronic structure shown in table 1.
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TABLE I. ELECTROMIC STRUCTURE OF TRIPLY IONIZED
RARE-EARTH IONS

Number Element Symbol Outermost electron shell

57 Lanthanum La 4d 1 0 4f 0 5s 2 5p 6

58 Cerium Ce 4d 1 0 4f 1 5s 2 5p 6

59 Praseodymium Pr 4d1 0 4f 2 5s 2 5p 6

60 Neodymium Nd 4d 1 0 4f 3 5s 2 5p 6

61 Promethium PM 4d 1 04f45S25p 6

62 Samarium Sm 4d 1 0 4f 5 5s 2 5p 6

63 Europium Eu 4d1 0 4f 6 5s 2 5p 6

64 Gadolinium Gd 4d 1 0 4f 7 5s 2 5p 6

65 Terbium Tb 4d 1 04f 8 5s 2 5p 6

66 Dysprosium Dy 4d 1 0 4f 9 5s 2 5p 6

67 Polmium Ho 4d 1 0 4t 1 0 5s 2 5p 6

68 Erbium Er 4d!04f,15s25pb
69 Thulium TM 4d 1 0 4f 1 2 5s 2 5p 6

70 Ytterbium Yb 4d 1 04f1 3 5s 2 5p 6

71 Lutetium Lu 4d 1 04f'h5s 2 5p 6

In the rare-earth series, it is assumed that the atomic inter-
actions are very strong; thus, when an ion is placed in a crystal, the
crystalline electric field acts as a perturbation on the ion. This
assumption allows the notation developed for the free ion to be used
with the reservation that many of the "good" quantum numbers of the free
ion are not quite good when the ion is present in the crystal. It is
assumed that the free rare-earth ions have the zeroth-order Hamiltonian

H = + U(ri) (99)

where P is the momentum of the ith electron and U(ri) is an appropriate
spherical average potential of the remaining (other than the N, 4f)
electrons in the ion. The single-electron solutions to equation (99)
are taken in the form (Schiff, 1968)

=R n£(r)Y2m(r) ,r(100)

where the Ym(r) are the spherical harmonics with £ = 3 for f electrons.
(Remember that £ - 0 for a, 1 = 1 for p, and I = 2 for d electrons.)
The radial functions in equation (100) are taken to be the same for all
the f electrons in the ion, while the angular functions, along with the
spin of each electron, must form a determinantal function so as to obey
the exclusion principle. Depending on whatever determinantal function

28



I

is chosen, the radial functions can be found by some self-consistent
method. These radial functions (Freeman and Watson, 1962; Fraga et al,
1976; Cowan and Griffin, 1976) have been found for the Hund ground
states of all the rare earths from cerium (Ce3 1) through ytterbium
(Yb 3 1)).

The Hund ground state for- the rare-earth ions with N < 7 is
given by assuming that all N spins are parallel and that each angular
momentum projection is the maximum allowed by the exclusion principle.
(In eq (100), X is the angular momentum and m is its projection.) Thus,
the Hund ground state for two electrons is the determinantal function

aMY1(YfR~ )c1(2 Y L( 2) - (l)Y 1,1-1 a(2 Y 91it(2)

where a is the spin "up" wave function (R = spin "down"). A convenient
notation for such a determinant is

{ I,-1} , (101)

where the upper sign is the spin projection (+ = up, - = down) and £ and
i-i are the z projection of the angular momentum (m in eq (100)). Thus,
the Hund ground state equation (101) for 4f 2 praseodymium (Pr 3 +) has
total spin, S, and total angular momentum, L, given by

S = 1/2 + 1/2 = 1,

L = X + £ - 1 2= - 1 = 5 (for f, £ = 3)

Hence, the ground state is L 5, with multiplicity of 2S + 1 = 3. In
the so-called Russell-Saunders notation, this state is referred to as
3 H, as given by the table:

Total angular momentum, L, of ion 0 1 2 3 4 5 6 7 .
Russell-Saunders label for the state S P D F G H I K ...

(continues alphabetically).

In this notation, the technical reference to such a state is a term;
other terms for Pr 3 1 are I1, 3 P, and 1S (Condon and Shortly, 1959). For
the ion Ce3+, which has one f electron, the atom notation becomes iden-
tical to that of the ion, that is, £ = L = 3 and s = S = 1/2 with the
single term F. Those ions in the series for N > 7 have the same terms
as for N < 7, and their Hund state can be constructed simply as

[1,1 . .1 J-(2X+1);iJ-1, • • p+11 , (102)

where the number of f electrons is N = 7 + p. The XN shel] is com-
pletely filled when N 2(2X+1), which for f electrons is triply ionized
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lutetium (Lu 3 +). As an example, consider triply ionized terbium (Tb 3 4),

which has the 4f configiuration. The determinantal wave function is

.9 • + + + 1--

{3 2 1 0 -1 -2 -3 3} , (103)

where total angular momentum L = 3 and total spi, angular momentum
7S - 6/2 = 3. Thus, the Hund ground state is F. In all cases, the Hund

term has been found to have the lowest energy in atomic systems. In
general, the wave functions for the higher terms are very difficult to
construct, but sophisticated techniques have been devised for the
orderly development of a set of wave functions for each ion in the
entire rare-earth series (Nielson and Koster, 1964). The Hamiltonian
given in equation (99) has the same value for all terms of the configu-

Nration 4fN; consequently, we ignore Ho in the future discussion.

3.2 Significant Free Rare-Earth Ion Interactions

3.2.1 Coulomb Interaction

The largest contribution to the Hamiltonian for a rare-earth
ion is the electrostatic interaction of the 4f electrons, which may be
written

Se2
H1  = ÷ ÷ (104)

i>j ri-r r

where

tij =i-j "

The matrix elements of this interaction for the state } (the 3H
term) of Pr3+ are

<3 HIH 13H> - F0 - 25F2 - 51F - 13F6 (105)

-where the Fk are frequently referred to as the Slater parameters. These
F. are related to the parameters F(ký (also frequently referred to as
"Slater integrals") by the following:

• i/I(0) (2), (~4)/o (6)F0 , F2 = F2)225, and 6 = 25F /184,041

(This relation is strictly for f electrons; a different relation exists
for d electrons.) The F are radial expectation values given by

(k) - r<k
F = e--- [Rn,(ri)Rn£(r 2 )] 2 drI dr 2  (106)

r>
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where

SR2 (r) dr 1
i0 n

r< r i
r> - if r < r. and

=ri if r > r
ri j

The confusion created by the two sets of F's does not end at this point;
there is still one further set of parameters, Ek, called the Racah
parameters, which are used to express the matrix elements of equation
(104). The relation of Ek to F(k and Fk is given in a number of places
(for example, Judd, 1963: 206).

3.2.2 Spin-Orbit Interaction

The second interaction of reasonable magnitude in the free
ion is the spin-orbit coupling, which is

N
"2 = ý •(rr)+i si , (107)

i= 1

where
h 2  1 dU(ri)

•tri 1 2= ri dri

2m2c 2i i

This interaction was derived from relativity theory in the Bohr orbit
quantum mechanics, but is a natural consequence ,.f a nonrelativistic
approximation to the Dirac equation. Values of F k; and ý (where C =
<4fI•(r)14f>) from Hartree-Fock wave functions are given in tables 2 and
3. In the rare-earth series, the interaction, H2 , is quite strong and
is in general much larger than the interaction of the rare-earth
electrons with the crystal fields.

Consequently, it is convenient to perform all the calcu-
lations in a set of basis functions in which H1 and H2 are diagonal.
The set of functions that achieves this is the total anfular momentum
function IJMj>, where the total angular momentum operator V +
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TABLE 2. RELATIVISTIC HARTREE-FOCK INTEGRALS FOR TRIPLY
IONIZED RARE-EARTH IONSa (all in em"I)

N R3 F F Ar M 2 M4

1 Ce - - - 696.41 - -

2 Pr 98723 61937 44564 820.22 1.991 1.110 0.752
3 Nd 102720 64462 46386 950.51 2.237 1.248 0.846
4 Pm 106520 66856 48111 1091.46 2.492 1.391 0.943
5 Sm 110157 69143 49758 1243.60 2.756 1.540 1.044

6 Eu 113663 71373 51342 1407.71 3.G31 1.694 1.149

7 Gd 117058 73470 52873 1584.45 3.318 1.855 1.258

8 Th 120366 75541 54361 1774.46 3.615 2.022 1.372
9 Dy 123592 77558 55810 1998.44 3.924 2.195 1.490

10 Ho 126751 79530 57227 2197.06 4.246 2.376 1.612

11 Er 129850 81462 58615 2431.00 4.580 2.563 1.739
12 TM 132897 83361 59978 2680.97 4.928 2.758 1.872

13 Yb - - - 2947.69 - - -

aR. D. Cowan and D. C. Griffin, 1976, J. Opt. Soc. Am. 66, 1010.

TABLE 3. NONRELATIVISTIC HARTREE-FOCK INTEGRALS FOR TRIPLY IONIZED
RARE-EARTH IONSa (all in cm")

N R3+ F2  F4 F6  M 0 M2 M4

1 Ce - - - 778.14 - - -

2 Pr 105120 66213 47718 919.16 2.2610 1.2669 0.8601
3 Nd 109731 69165 49860 1069.87 2.5478 1.4294 0.9709
4 Pm 113640 71641 51647 1228.24 2.8261 1.5865 1.0779

5 Sm 117222 73893 53269 1397.79 3.1079 1.7453 1.1859
6 Eu 120885 76204 54937 1583.54 3.4093 1.9153 1.3016
7 Gd 124644 78585 56655 1786.68 3.7320 2.0976 1.4258

8 Tb 127137 80091 57722 1990.51 4.0130 2.2544 1.5320
9 Dy 129960 81829 58962 2214.87 4.3231 2.4281 1.6500

10 Ho 132929 83670 60281 2458.58 4.6552 2.6144 1.7766
11 Er 135859 85486 61580 2719.76 5.0004 2.8081 1.9081

12 TM 138754 87276 62864 2999.22 5.3590 3.0092 2.0448

13 Yb - - - 3299.82 - - -

as. Fraga, K. M. S. Saxena, and J. Karwowski, 1976, Physical Sciences

Data 5, Handbook of Atomic Data (Elsevier, New York).
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The spin-orbit interaction H2 given in equation (107) com-
mutes with the total angular momentum and, consequently, since H, also
commutes with 32, the wave functions can be characterized by the eigen-
values of J2 and J z That is, we can write or IJM> for the wave
functions withIJ 2 1jM> - J(J + 1)IJM> (108)

and

Jz JM> - M=JM>

For any term of given L and S (eigenvalues of L2 and g2), the values of
J are restricted to

IL.- S1 _ J < IL + S1

Then the wave functions are customarily written +JMLS or IJMLS>, and we
have

L 2 1JMLS> - L(L + 1)IJMLS> ,
S2 1jMLS> = S(S + ,,jMLS>
J2,JMLS> = J(J + 1)IJMLS> ,

SJzIJMLS> = MIJMLS> , (109)

and

<J'M'L'S'IHI + H 2JMLS> a 6 j*MM, (110)

As implied in equation (110), the energy H1 and H2 is independent of M,
or each J level of the free ion is 2J+l-fold degenerate. The matrix
elements in equation (110) do not vanish generally for L' - L i I and S'
- S ± 1 thus, L and S are not strictly good quantum numbers. Neverthe-
less, the energy levels are labeled as though they were, as in the
Russell-Saunders notatio, 2S+ Ljo. An ex4Mple of the energy levels for
the 4f 2 configuration of the free ion (Pr ) is given in table 4. Also
included is the same ion, Pr 3 +, in the host materials lanthanum tri-
chloride (LaCI 3 ) and lanthanum trifluoride (LaF 3 ).

msof The results in table 4 are interesting in that they show that
most of the energy levels observed in the free ion are lowered when the
ion is embedded in a solid. This shift ln the energy levels is at general effect and is not restricted to Pr +, but exists in all the
rare-earth ions where a comparison with energy levels of the free ion
can be made. In fact, this shift has been observed by Low (1958a,b) in
ions with an unfilled d shell. The first explanation of this shift in
energies was by Morrison et al (1967), where it was shown that if the
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ion under investigation was assumed to be embedded in a solid of homo-
geneous dielectric constant, c, then a decrease in the Slater integrals
is given by

AF(k) = -e 2 (c-1)(k+1)(<rk>) 2 /{b 2 k+1[+k(e+1)]} , (111)

where b is the radius of a fictitious cavity surrounding the rare-earth
ion. The result given in equation (111) was first successfully applied
to Co++ in MgAl20 4 . Later, Newman (1973) showed that the shift inF~k)
given in equation (111) was sufficiently large to predict the shifts in
the energy levels for rare-earth ions. More recently, Morrison (1980)
derived the result

AF(k) = - 2 <r ke > ' (112)

i R.

where ai is the polarizability of the Zi ligands at Ri and <rk> is the
radial expectation value of rk. The result given in equation (112) is
believed to be more fundamental than that of equation (111) because the
latter explicitly accounts for the local coordination of the rare-earth
ion. Morrison (1980) gives a predicted shift in the spin-orbit param-
eter, r, but because of the smallness of the predicted shift and the
errors in the fitting of the experimental data, no comparisons were
made.

TABLE 4. FREE ION ENERGY LEVELS OF TRIPLY IONIZED PRASEODYMIUM
AND CORRESPONDING CENTROIDS IN TWO CRYSTALSa (all in cm-I

[LS]J Free LaC1 3  LaF 3

3H 0 0 0
3H 2152 2119 2163
Q 4389 4307 4287

3 F 4997 4848 5015
33  6415 6248 6368

3F4 6855 6684 6831
1 9921 9704 9801
1GD 17334 16640 16847
3 21390 20385 20727

3pI 22007 21987 21314

3•16 22212 21327 -
3p2 23160 22142 22546
So 50090 48710 46786

aG. H. Dieke, 1968, Spectra and Energy Levels of Rare Earth
Ions ia Crystals (rntersclence, New York), p. 200.
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Because of the lack of experimental data on the free-ion
spectra of rare-earth ions, measirement of the shift in the Slater
integrals is possible only for Pr + The experimental F k) for triply
ionized rare earths in LaF 3 and LaCl 3 have been obtained by Carnall et
al (1978), and these results are given in tables 5 and 6. These data
can be used in conjunction with equation (112) to obtain results that
can perhaps be applied to an arbitrary host material to predict a priori
the energy level shift of that host.

TABLE 5. FREE-ION PARAMETERS FOR TRIPLY IONIZED RARE-EARTH IONS
IN LaCd 3 OBTAINED FROM FITTING EXPERIMENTAL DATAa (all in cm")

Ionb F2  F4  F6  C B y

Pr 68368 50008 32743 22.9 -674 (1520) 744
Nd 71866 52132 35473 22.1 -650 1586 880
Pm 75808 54348 38824 21.0 -(45 1425 1022
Sm 78125 56809 40091 21.6 -724 (1700' 1168
Eu 84399 60343 41600 16.8 (-640) (1750) 1331
Gd 85200 60399 44847 (19) (-643) 1644 (1513)
Tb 90012 64327 42951 17.5 (-630) (1880) 1707
Dy 92750 65699 45549 17.2 -622 1881 1920
Ho 95466 67238 46724 17.2 -621 2092 2137
Er 98203 69647 49087 15.9 -632 (2017) 2370

aW. T. Carnall, H. Crosswhite, and ff. M. Crosswhite, 1978, Argonne
National Laboratory, ANL-78-XX-95.

Values in parentheses were not varied in the fitting.

TABLE 6. FREE-ION PARAMETERS FOR TRIPLY IONIZED RARE-EARTH IONS IN
LaF 3 OBTAINED FROM FITTING EXPERIMENTAL DATAa (all in cm 1 )

Ionb F2  F4  F6  a B y

Pr 69305 50675 32813 (21) -842 1625 750.8
Nd 73036 52624 35793 21.28 -583 1443 884.9
PW (77000) (55000) (37500) (21.00) (-560) (1400) (1022.)

Sm 79914 57256 40424 20.07 -563 1436 1177.2

Eu (84000) (60000) (42500) (20.0) (-570) (1450) (1327)
Gd 85587 61361 45055 (20.0) (-590) (1450) 1503.5
Tb 91220 65798 43661 19.81 (-600) (1400) 1702
Dv 94877 67470 45745 17.64 -608 1498 1912
Ho 97025 68885 47744 18.98 -579 1570 2144
Er 100274 70555 49900 17.88 -599 1719 2381
Tm 102459 72424 51380 (17.0) -737 (1700) 2640

aw. T. Carnall: H. Crosswhite, and H. K. Crosswhite, 1978, Argonne

National Laboratory, ANL-78-XX-95.
bvalues in parentheses were not varied in the fitting.
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3.2.3 Interconfigurational Interaction

An interaction that has been frequently used in fitting the
"free" ion levels of rare-earth ions in a crystal is the so-called
interconfigurational mixing or the Trees interaction. This interaction
has been parametrized by Wybourne and Rajnak (Wybourne, 1965) and is

H = aL(L+1) + OG(G 2) + yG(R 7) , (113)H10 2

where a, 8, and y are parameters adjusted to fit the experimental data.
The operator G(G 2 ) is the Casimir operator for the group G2 , and G(G7 )
is the similar operator for R7 (note that t2 - L(L+I) is the Casimir's
operator for the group R3 ). The values for these operators for all the
states are tabulated by Wybourne (1965: 73). The values for the state
of f 2 are given in table 7. The values of a, 8, and y obtained by
fitting experimental data for the rare-earth ions are given in tables 5
and 6. To my knowledge, no successful attempts to derive theoretical
values of a, 8, and y have been published.

3.2.4 Other Interactions TABLE 7. EIGENVALUES OF
CASIMIR'S OPERATORS FOR

Many other interactions STATES OF f 2

are considered in the free ion, such
as spin-other-orbit, orbit-orbit, state a 12b 5y
and configuration interaction. All

of these to a greater or lesser 3P 2 12 5
extent improve the fit of theoret- 3 F 12 6 5
ical snergy levels to the experi-
mental data. We will omit these 3H 30 12 5
interactions from further discussion
since H1 , H2 , and H1 0  give a is 0 0 0
sufficient representation of the 6 14 7

free ion for our purposes here.
However, we shall list a number of 1G 20 14 7
interactions including the above
which have been considered by 1 42 14 7
various research workers (Wortman et
al, 1973a,b):

H7 = the nuclear quadrupole
H1 = the Coulomb interaction interaction
H2 = the spin-orbit interaction H8 - the spin-other-orbit
H3 = the crystal-field interaction interaction
H4 - the interaction with a magnetic H9 = the orbit-orbit interaction

field (Zeeman effect) H1 0 = the interconfigurational
H5 - the hyperfine interaction interaction
H6 = the spin-spin interaction H 1 1 - the spin-crystal-field

interaction

The notation listed above is that of Judd (1963), with a few obvious
additions.
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3.3 Summary

We have considered the Coulomb interaction, H1 , and the spin-
orbit interaction, H2 , for the configuration 4 fN in the free ion. The
wave functions that are chosen as a basis for diagonalization of these
interactions is IJMLS>, and the resulting energy levels are labeled
according to the Russell-Saunders notation as given in section 3.1.
This same notation (plus additional quantum numbers) will be used for
describing an ion in a crystal. The values of <rk> that are needed in
equations (111) and (112) are given in table 8. The wave functions used
for the calculation of the energy levels of a rare-earth ion in a solid
will be the combination that simultaneously diagonalizes H1 and H2 .

TABLE 8. NONRELATIVISTIC HARTREE-FOCK EXPECTATION
VALUES OF <r k>, NUCLEAR SPIN, AND MAGNETIC MOMENTS OF TRIPLY

IONIZED RARE-EARTH IONSa (atomic units)

N R3 + <r 2 > <r4> <r 6 > <r-3> 1 ON

I Ce 1.1722 3.0818 15.549 4.88571 7/2 0.9
2 Pr 1.0632 2.5217 11.492 5.52708 5/2 4.3
3 Nd 0,97822 2.1317 8.9525 6.17823 7/2 -1.08
4 Pm 0.91401 1.8701 7.4224 6.82779 7/2 2.7
5 Sm 0.86059 16700 6.3365 7.49427 7/2 -0.67
6 Eu 0.81064 1.4898 5.3886 8.20108 5/2 3.464
7 Gd 0.76368 1.3267 4.5589 8.95054 3/2 -0.254
8 Tb 0.73523 1,2508 4.2673 9.66059 3/2 1.99
9 Dy 0.70484 1.1644 3.9002 10.42528 5/2 -0.46

10 Ho 0.67481 1.0788 3.5296 11.23504 7/2 4.12
11 Er 0.64714 1.0028 3.2111 12.07835 7/2 -0.564
12 Tm 0.62154 0.93514 2o9355 12.95607 2 0.047
13 Yb 0.59678 0.87030 2.6713 13.87743 5/2 -0.6776

aS. Fraga, K. M. S. Saxena, and J. Karwowski, 1976, Physical Sciences

Data 5, Handbook of Atomic Data (Elsevier, New York).

4. CRYSTAL-FIELD INTERACTIONS

4.1 Phenomenological Theory of Crystal Fields

In the presence of a crystal field we take the interaction of
the rare-earth ion whose configuration is 4f as

N A

H3 - • B+q i Ckq(ri) (114)

kq
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where the Ckq are unnprmalized spherical harmonics given by

Ckq(r) 2•- kq

The use of Ck in place of Yk7 seems trivial, but it saves writing a
tremendous numler of factors o 4n and 2k+1 in the interactions. The
use of the Ck_ in expressions for electronic interactions (along with
other shorthan• notation that we will not use) is practically universal.
The number of terms in equation (114) that needs to be considered is
limited by the symmetry of the site occupied b• the rare-earth ion.
Also, since we will be discussing only the 4f configuration, k is
limited to values of 6 or less. This limitation arises because, inde-
pendent of the basis chosen, individual matrix elements of Ck will have
to be considered, and these are such that <flCkqlf> = 0 if k > 2f = 6.

The highest possible symmetry that an ion can experience in a
crystal is full cubic (for example, Cs 2 NaLnCl 6 , where Ln any rare-

earth ion); in that case, two B are necessary, B40 and B6 0 , since B4 4
= (5/7U0)B 4 0 and B6 4 = - (7ýB2 and Bk = 0 for k odd. Because of
the simplicity of the calculations, the ion is often assumed to occupy a
point of cubic symmetry with perturbations. In general, this assumption
is not very productive. On the other hand, in many solids the rare-
earth ions occupy a site with no symmetry (such as LnP 5 0 14 , where Ln = a
rare-earth ion; these are the pentaphosphates, one of the best known
laser host materials for Nd). In this case, all the Bkq are allowed,
which for the 4f configuration are B2 0 , B 2 1, B2 2 , B4 0 , B 4 1,
B6 6 . Since each Bk , q * 0, is complex, there are 27 parameters.
Unfortunately, the tecChnical importance of the rare earths in tnese low-
symmetry solids complicates the problem of calculating energy levels for
practical application. At present, we assume that the ion is in a
slightly more symmetric position in the pentaphosphates for simplicity
in the calculation (Morrison, Wortman, Karayianis, 1977) but have no
idea how good these approximations are.

We have been assuming in equation (114) that the Bk a.e the
same for each electron, which is a universal assumption made wen deal-
ing with rare-earth ions. We will continue with this assumption here.
The Bkq are referred to as the crystal-field parameters and, as the name
implies, are used as parameters when fitting the experimental data.

In the early days of the experimental investigations of rare-
earth ions in solids, relatively few materials could be grown as single
crystals with a small amount of rare earth contained substitutionally.
An exception was lanthanum trichloride (LaC 3 ), which was the crystal
used by the Johns Hopkins Laboratory under the direction of Gerhardt
DieKe, who in the span of 10 to 15 years, along with his graduate stu-
dents, had reported the absorption and emission spectra of nearly every
rare-earth ion. In one of Dieke's publications (Dieke and Crosswhite,
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1963), he gave an energy level diagram of the results of this research.
This diagram became so popular that it is generally referred to as a
"Dieke chart" and is found in practically every laboratory where the
spectra of rare-earth ions are being investigated or rare-earth ion
lasers are being designed. These Dieke charts are invaluable for the
investigation of a new crystalline material (commonly referred to as a
"host") that has been grown to contain a low atomic percentage of a
particular rare-earth ion. A common method for referring to a substi-
tutional doping is Y3 ( 1 _x)Nd 3xAl 5 O1 2, for x x 100 percent neodymium-
doped yttrium aluminum garnet. When a solid contains a rare-earth ion
as one of its constituents, such as the excellent laser material
NdP 5 0 1 4 , it is referred to as a stoichiometric laser material. A pri-
mary requirement of a host material, besides being transparent in the
region of interest, is that cne of the atomic constituents be trivalent
and have nearly the same ionic radius as the ion in the rare-earth
series. Also, the solid should have no absorption bands in the region
of interest. The most common ion meeting these requirements is yttrium,

and most of the rare-earth doped laser crystals have this element as a
constitutent, although several of the rare-earth ions themselves meet
these requirements, such as La 3+, Lu 3 +, and for particular purposes

gadolinium Gd 3 +•

4.1.1 Matrix Elements of H3 in J States

In order to make full use of tabul-,ted data in our calcula-
tions, it is necessary to make some modifications in equation (114).
Neilson and Koster (1964) have calculated the reduced matrix elements of
the unit spherical tensors introduced by Racah. The Ckq(i) can be
written in terms of those tensors as

C (i) = /T+ <tl 11C kUM(i) (115)kq k q

and

nd Ckq(i) =(k) (116)
i

where

<tIIC klt> = <k(0)k(0)I£(0)>

Thus equation (114) may be written

"H3 = k r _qP-f< <t1Ck HiX>ru4k) ( (117)
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The reduced matrix elements tabulated by Neilson and Koster
are for L-S states, so we must relate the matrix elements in the J basis
to L-S basis. To do this we construct the state

IJMLS> = <L(u)S(M-p)IJ(M)>ILtSM-p> . (118)

Then

<J'M'L'S'!u (k) lJMLS> -<J(M)k(q)jJ'(M')><J'L'S'Ru (k) IjLS> , (119)
q

by application of the Wigner-Echart theorem. If now we calculpte the
matrix element in equation (119) by using the wavefunctions of dquation
(118), we have

<J'M' L'S'IU(k) JMS>
q

lip' (120)
x <L 1' 1 U'S 'M - Po u [ (k ) jL wSM- v'

q

The matrix elenments,

<L'iiS'M'-I' IJk) jLuSM-li>
q

6 6 M <L()k(q) L'()><L'S, (k) LS> (121)= SS' 6M'-p',M-i•

aue obtained using the Wigner-Echart theorem, with the knowledge that
Uk) is a spherical tensor in orbital space only. In equation (120) the
last C-G coefficient and the C-G in equation (121) can be rearranged to
give

I <L(tj)k(q) IL' (lj)><L' (l')S(M-j) JJ'(S')>

)L+k-L' (122)= (-)~kL< qL•IL' (s' )><L'(J' )S(M-•i) IJ' (M' )>,

where we have used the results S' - S and M' - i' = M - p given in
equation (121). The two C-G coefficients given in equation (122) can be
written
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S( -I)L+k -L '

S(-)L+k-L' •(2L'+1)(2f+1) W(kLJ'S;L'f)<L(U)S(M-W)If(M)> (123)

f

X <k(u)f(M)IJ'(M')>

Since all the dependance on p is contained in the first C-G in equation
(120) (the only one remaining) and the first of equation (123), this sum
can be performed to give

[ <L(Ij)S(M-u)IJ(M)><L(p)S(M-u)if(u)> = 6jf (124)

from the orthogonality of the C-G coefficients. Substituting these
results back into equation (120) we have

<JIMILIS'IU(k)IJMLS> = (-1)L+k-L'/(2L,+1)(2J+I) W(kLJ'S;L'J)
q

x <k(q)J(M)IJ'(U')><L'SIu(k)IILS> 6ss, . (125)

We have used the condition f = J in equation (124) and the result in
equation (121). To compare the result in equation (125) with equation
(118), we need to rearrange the C-G in equation (125):

<JIL'SIIU(k)IJLS> = (-1)L+J'-L'-JV( 2 1+l)( 2 J+l) W(kLJ'S;L'J)
S<LSIU(k)NLS> (126)

The matrix elements tabulated by Neilson and Koster (1964) are related
to ours by

(L'sIU(k)"LS) = rl'TT <LISUU(k)ILS> • (127)

Finally the complete matrix elements of H3 given in equation (117) are

<JIM'L'SIH 3 1JMLS>
B + = ~<J(M)k(q)jJ'(M')> r2k+ <XICk 1>

kq kq k(128)

x <JL'SUU(k)IjLS> (
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with

<J'L'SIIU(k) hJLS>.= (- 1 )L'L'+J'-J/2 + W(kLJ'S;L'J) (129)
x (,SlIU(") IILS)

and

<911C kll£ = <X(0)k(0)It(0)>

For k = 3, <XlCk 8> = -2//T5.5, 2/1r2, and -10/1V4-29 for k = 2, 4, and 6,
respectively.

4.1.2 Numerical Example: 4 Fj States of Rd3+

As a numerical example of the calculation of the crystal-
field splitting, we will calculate the splitting for Nd3 + (4f 3 ) in a
field of S4 point symmetry. We shall assume that the levels are pure
4 FJ. We assume that L, S, and J are all good quantum numbers; then we
consider matrix elements of H3 in equation (128) with J' = J and L' =

L. Thus,

<JM'LSIH 3 IJMLS> = B*q<J(M)k(q)I(M')>kq 
(130)

X <Jg•kIJ> f21+ <X(0)k(0)I£(0)>

The values of the reduced matrix elaments <J1luk jJ> VI-+<£IICkIZ> for the
4F state of Nd3 + are as in table 9. In obtaining these values we have
used Neilson and Koster's results (1964) for the reduced matrix ele-
ments, (LSIIU ILS), for L = 3 and S = 3/2; the Racah coefficients (6
symbols) are found in Rotenberg et al (1969).

TABLE 9. VALUES OF <JUkIJ>/2-f7<jC k 10

J k =2 k - 4 k 6

3[11/2
2 5 0"o 1

2 2.5 -521 [2.3- 71 0

2 /2 tj [r-hi'l' -35 ,1/2
2,3 --- 1'/ 2_ 3.Z ,.-1-i

9 _.L. /2_..31i/2 _ _ ] /1/22
2 2.3 12 -3 J 2.3 2.11] 3 [ 3 11o13
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The calculation of the energy levels is made somewhat simpler
by using wave functions that transform according to some irreducible
representation of the S4 group (Koster et al, 1963). The irreducible
representations of the S4 group are all one-dimensional, but, since the
ion under investigation has an odd number of electrons, the energy
levels will be at least doubly degenerate. Thus, of the four irreduc-
ible representations--I' 5 , r60' r7 , and r 8 -- only two need be chosen, we
chose r5 and r7 . The energy corresponding to r6 is degenerate with r5
and that corresponding to r8 is degenerate with r7 . The wave functions
belonging to r7 with a particular J value are

IJ WS±+1 > < k < 2J1.
2 8 - -

and those for r5 are

IJ I l , 2J-3 < k < 2J+328 - - 8 '

where k is an integer, and the number of k values occurring for a given
J is the number of times a representation will occur. The number of Bkq
for the calcium site in calcium tungstate is five: i.e., B2 0 , B4 0 , B6 0 ,
B4 4 , and B6 4 . Of these parameters only the B6 4 is complex. The matrix
elements of the crystal field given in the above equation are presented
explicitly under particular states in the following paragraphs.

4F3/2

This level of the free ion is split into two doublets by the
crystalline field. The wave functions corresponding to r7 and to r5
are I½> and'- > respectively. From equation (130) we have

31 ½> 22 - = 20 r ½) (131)
22 H3  2 2 2 72'

and
S3 3 IH 13 3 2

<2- 1H I - ý! 20 = E(5 , (132)S2 2 32 2 25 B20 52

where the appropriate values of the reduced matrix elements in equations
(131) and (132) were taken from table 9. The total splitting of the
4F state is then

S4 B(133)
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F S/2

Unlike the previgu• case, this state contains two r Is, and
their wave functions are 12 > and - 2 The wave funcon for
the r7 state is I ½>. The energy for r 7 is

< 5 H31 > , 7-0 [-4B20 + 5 B = E(r7  (134)

The necessary matrix elements for the energy in r5 are

55 3 H 55 11 r 25
2 31I 70"0 [5B2 3 4-B

<2 2 3 2 2 200 38 1 40~ 1 224
<7-0IH 1 1-5 [-B 2 0 -b - B4 0 ]=b 2 2  (136)

<5 3 IH155 1

6/1 44 12 *

The two energy levels corresponding to r 5 are

El5 5) bil + b22 + [(bl1 - b22)2 + 4b 1 2 b1 2 ]1/2
=1(r5  2 , (138)

b11 + b22 - [(b 1 1 - b 2 2 )2 + 4b 1 2 b!•2 ]/2
E2 (r5 a) = 2 1 (139)

4F7 /2

This state contains two r 5 ,s and two r 7 1s . The matrix
elements for r7 are

7 1 7 1 1  5 5 B+ 9 50< IH 1 > 1> [11B +1 +B ]LO = a1  (140)
2 2 3 2 240 60 1 '

,/

<7 7 7 7 1 [ 1 > 10 B a (142)-•INH1I ---- > =- [li +jB 40  " "-j B60 J=a 2 2  (11

2 2 3 22 99 204 1 4] 1

- •IH1 > = 9- 844 - B6 4  = a 1 2  . (142)
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The two energy levels are

EI(r 7 7Z) a,, + a2 2 + [(all - a 2 2 ) 2 + 4a 1 2 aI 2 1'2 (143)

E2(r7 + a 2 2 - [(all - a 2 2 ) 2 + 4a 1 2 al2]1/2
E2 (r7 .) 2 2 (144)

The matrix elements for r5 are*

< -1 H Z . I rI B L- 'B +~ 1- 15
22 13 22 99 7 20 14 40 13 B6 0 ] = l (145)

7Z - 71 1 H 1 [-33 B -9B-20B b(16

2 H3  ' -2 2 > 2 [9 7 20  14 B 6 0  b 2 2

..... 1•B20 B ] b (147)3 2 2 2 99 [1 9- 4 44 13'42 6 4  2 "

The corresponding energies are given by substituting the above values of
bij into equations (138) and (139).

F 9/ 2

The number of r7's in this state is three, with two r5's.
The matrix elements of the crystal field for r7 are

I 1H3 1 > = .) [6B20 - 1 B40 + 30 B6 0 ] al1  (148)

< 4 ½ IH31H•I = "• [-4B20 - . B4 0 - g B6 0 ] a2 2  , (149)

Q 7 Q 7 7 r. 20 B4 §TI 601 2

- ½ I•31 20 - .> - • [ + 2 B4 0  9 T6oi - a33  , (150)

S~< IH3 9[" B4+ 6]" a12 ' (151)

C 3- 31HI 4 > P 1 3/ B44 + B6 4] - a23  (1)

*The symbol a14 will be used for the matrix elements in r7 and bi-j
for those in r t1 avoid introducing new symbols for each new value 01
J.
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The three energies are given by the solutions of

E 3 
- (a 1 1+a 2 2 +a 3 3 )E 2 +(alla22+alla33+a22a33-a23a*3-a12al2)E

(153)
+ a 1 1 a 2 3 a1 3 + a 3 3 a 1 2 a¶ 2 - a 1 1 a 2 2 a 3 3 = 0 •

The matrix elements for r 5 are

9 5 9 5 > = 1[ + 17 + 100 ] b(
2 2 31 2 39- B2 0  7 B4 0  9-1 B6 0  1

9 3 9 3 7r 3 60

- IH 1 - > = 7 [-3B -- 'B +- 6j• = = b (155)2 2 3 2 2 396 20 7 40 91 601 22

< - IH 1 9 5 > = 7[ /3,0 B - 40 V6 B b (156)
2 2 3 2 2 39 7 B44 91 64 12

The energies E,(r 5 22) and E2 (r 5 2) are given by equations (138) and
(139), respectively, using the bij given above.

Calculation

Three of the crystal-field parameters can be obtained quite
simply from the experimental data. These are B2 0 , B4 0 , and B6 0 . If we
express the sums, Si, in terms of the Ei where the Ei are experimental
data, then we obtain

SJ-1/2= i(r 7 j)
i

and

S1 = - 2 B (157)
S1  25 20

11 +1
S =--"B +-1 (158)2 175 20 4 2 B 4 0

2 +8 +40 ,

S -B + -2-B + -4 B ,(159)
3 63 20 693 40 1287 60

1 7 40
S -B - -B - 4--B ,(160)4 9 20 198 40 1287 60

where S4 is for the J = 9/2 level. These equations can be inverted to
give

25
B 2 (161)
20 2S1
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a40 = -33S 1 + 4282 (162)

1001_.!I$ 78 1287
B --101S - -- S +-IMS (163)
60 40 1 5 2 40 3 3

The other crystal-field parameters are slightly more in-
volved. From equations (138) and (139) we have

B4 4 =3/T [w3,r 4 1 1/2 (164)

where

N1 = - q S1 + 2S2 and W, = EI(r 5 *) - E2 (r 5 2)

To determine B6 4 , we use equations (143) and (144) to give

a 1 2 al 2 I=- [W2 - N2] (165)

where
7 -2 37'

N -ZS z-S +4--S and W ~E1-(r E (r"2 2•1 3s2 2s3 2 2 2r7 2

A similar expression can be obtained using equations (145)
and (146) in equations (138) and (139), yielding

b1b2= - [W2 - N2] ' (166)

where
13 77

N = -L S - 2S + - S and W EI(5 Z) - E2(r. -)
3 6 1 2 2 3 3 152 252

Substituting equations (142) and (143) into the left side of
equations (165) and (166), we obtain two equations for B 6 4 . These two
equations can be solved simultaneously for both real and imaginary parts
of B6 4 to give

R= (W2 [ W2 -N2;+ - N2) - 6(W2 - N2)]1/2 , (167)

1599 (W2 N2) 8(W2 -N2).79Z W2 N2

Cos O= L 1 (168)

20i70 -, (W2  N21/
where

64 e
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All the crystal-field parameters can be determined once the

experimental data are taken on the 4 F3 / 2 , 4F5/2, and r7/2 levels.

As tedious as the above procedures may have seemed, the
crystal-field parameters we obtain are only approximate since we have
ignored L-S mixing by the spin-orbit coupling in the free ion and J
mixing caused by the crystal field. Nevertheless, the crystal-field
parameters obtained by the above procedure can serve as very good start-
ing values in a fitting of a more sophisticated calculation to experi-
mental crystal-field levels.

The crystal-field parameters Bkq obtained by the above proce-
dure for Nd 3 + in CaWO4 are given below, along with crystal-field param-
eters for the same ion but with full diagonalization, that is, L-S
mixing and J mixing (Wortman et al, 1977).

Bkq B 2 0 B4 0  B4 4  B6 0  RB6 4 IB 6 4

above 403 -635 +711 -219 885 0

full diagon- 509 -866 1042 -509 903 243
alization

4.2 Classical Point-Charge Model

In the simplest model of the crystal field, the point-charge
model introduced by Bethe (1929), the lattice is replaced by an array of
point charges placed at the nuclei of the constituent ions. A multipole
expansion is made of the point-charge potential energy at the rare-earth
site. Thus, if ý Jn(J) is the vector position of constituent j at site
j in the £, m, nth cell, we have

-e2Zj

"-3 + P (169)
imn j IR Lmn (J) ri

where
÷ /

P + mý + n + +•R~mn

and a+, , and c are lattice vectors. The charge at site j is eZj and r
is the position of an electron on a rare-earth Ion. The multipolar
expansion of equation (169) is
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-e 2 Z jrk
"H3  •nk1 Ckq (r)Ckq km(j)] (170)

#An rR,(J)1NI q ~ n

The multipolar crystal-field components Akq are

ZjCkqLR in<i)]
Akq = -e2 I I • - n Jk+l (171)

Thus the point-charge Hamiltonian is

NH * rk r 12
" 3 = Akq ri Ckq(ri) (172)

kq i=I

where we have summed over all the N electrons in the 4fN configuration.
If all the lengths are measured in A (10-8 cm), then

a 0 8 ZjCkq[R mn(J)]_.o x 108 (173)
Akq = 2w £mn j [R lmn(j) ]k+1

where *o = e 2 /hc (as/2"t x 108 116,140)--that is, the fine-structure
constant--and the units of Akq cm-l/Ak. If <rk> is in A units, then
Akq<rk> = cm-I1

The sum in equation (173) always converges--even for the lowest
k value (k - 0)--if taken in the order indicated. That is, the sum over
j is performed with X, m, and n fixed. The unit cell is neutral, that
is,

SZj = 0 •(1174)

In many cases (not all space groups) it is possible to choose an origin
for the lattice coordinates such that the dipole moment of the unit cell
vanishes; that is,

S•z( 0 (175)
SJ

where ý is the position of the Jth charge in the unit cell. The result
in equation (175) can be anticipated by observing the point symmetry of
th4'x tons in a specific solid. If the ions occupy C1 , C2 , Cs, C2v, C4 ,
C4v, C31 C3v, C6 , or C6 v point symmetry (Schoenflies notation), then it
is impossible to satisfy equation (175) with these sites as the origin
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in a unit cell. If it is possible to satisfy equation (175). then the
sum given in equation (173) converges very rapidly. This can be shown
from the expansion (Carlson and Rushbrooke, 1950)

C (R-x) / C* (R)
kq = 2a+2k (x) a+k,0a+S1+ + k+1 • X 2a <a(ot)k(q)1&+k(oe+q)>xaC a W Ra+k+1

IR-x1 aaa R (176)

With Pi = x and 0mr~) A (A £j) (0) + p9), for the sum in
equati6n (173) we have

Z ZjCkq[R mn(J)] (2a+2k)1/2 <a(a)kq)la+kcx+q>S• -~~~~~k+1 L ( 2a/ <aakqakeq)

kmn j [RYmn(j)] £mn aa (177)

X e OC ((P.) a+k'+q[Rm(0)]
j j j[RaXn(O) ]a+k+l

Now if equation (175) is satisfied, then
A

SZjp.eC(pj) = 0 • (178)

Thus, the sum in equation (177) is for a > 1; we see that even for the
lowest term. k = 0, we have the individual terms falling off as
1/Rlmn(O). While the expansions in equations (176) and (177) are good
for demonstrating the rate of convergence, the computation of Aq by
equation (173) is more practical. However, in equation (173), the sum
over j should be done for each cell First, with fixed values of X, m,
and n. In programming language, this is expressed by stating that thie j
loop is the innermost of the nested £, m, n, and j loops. In some
lattices, the condition in equation (175) may place some of the point
charges on the cell faces. In these cases it is a simple matter to
balance these charges by an adjustment to fractions of equal charges on
opposite faces.

The convention we use for our lattice sums is that given in the
International Tables for Crystallography (1952); table 10 is reproduced
from volume I (the other two volumes give data strictly for x-ray crys-
tallographers). The data used in the lattice sums are generally those
reported in Acta Crystallographica, Section B. Care should be taken to
make certain the correct setting is used.

Typical data used in the calculation of the lattice sums are
given in table 11 (LiYF 4 , calcium tungstate space group 88, Scheelite
structure). All the data given in table 11 are given in the Interna-
tional Tables, except that the x, y, and z coordinates are determined by
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TABLE 10. CRYSTALLOGRAPHIC AXIAL AND ANGULAR RELATIONSHIPS AND
CHARACTERISTIC SYMMETRY OF CRYSTAL SYSTEMS

Space System Axial and angular X-ray data needed
group relationships for unit cell

1,2 Triclinic a 0 b * c a, b, c, a, 8, y
a * * y * 90°

3 to 15 Monoclinic First setting a, b, c, y
a b * c
a =900 * y

Second setting a, b, c, 8
a b c
a= y= 90, * 8

16 to 74 Orthorhombic a * b * c a, b, c
a= 8= y = 900

75 to 142 Tetragonal a = b c c a, c
a 8 = y = 900

143 to 167 Trigonal (Rhombohedral axes) a, a

(may be taken a = b = c
as subdivision a = 8 = y < 1200 * 900
hexagonal) a = b * c

a = 8 = 900
y = 1200

168 to 194 Hexagonal a = b c c a, c
a = a= 900
y = 1200

195 to 230 Cubic a = b = c a
a = 8 = y = 900

Source: International Tables, 1952, Vol. I, p. 11, table 2.3.1.

x-ray diffraction. The lattice constants a, b, and c are also deter-
mined by x-ray diffraction and, as customary, the true positions of the
ions are xa, yb, and zc (these relations hold for all the ions in a unit
cell). The polarizability (from Kittel, 1956: 165) of each ion is given
at the bottom of table 11. Fbr this particular solid, only the fluorine
ions can have dipole moments that contribute to the crystal field (we
shall discuss the role of the dipole moments later on). All the data
for space group 88 are not contained in table 11 because the equivalent
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positions given in the International Tables are generated inside the
program. The centering position in the cell can be taken as either the
Y or Li site, since these positions have S4 symmetry, and their lowest
crystal-field component is A2 0. Equation (178) is therefore automati-
cally satisfied. The resulting lattice sum for the Y site in LiYF 4 for
the parameters in table 11 is given in table 12.

TABLE 11. CRYSTALLOGRAPHIC DATA FOR LiYF 4 (SCHEELITE, CaWO4 )
TETRAGONAL SPACE GROUP 88 (FIRST SETTING) Z - 4

Ion Position Symmetry x y z

Y 4b S4  0 0 1/2
Li 4a S4  0 0 0
F 16f C1  0.2820 0.1642 0.0815

Notes: a - 5.1668, b = a, c = 10.733, a 9-0, 8 = 900,
y= 900, a = 0.55 A3 , aLi 0.05 A3, F - 1.04 A3 (reduced

to 0.104 in the lattice sum), Z. = +3, ZLi = +1, ZF = -1.

TABLE 12. LATTICE SUMS FOR Y SITE AT (0, 0, 1/2) FOR
LiYF 4 WITH Zy = 3, ZLi = 1, ZF = -1, = 0.104 A3

Lattice Monopole Anm Dipole Anm Monopole and dipole
sum

Real Imaginary Real Imaginary Real Imaginary

A2 0  1074 0 340 0 1414 0
A3 2  373 859 -358 74.0 15 933
A4 0  -1957 0 -98.1 0 -2055 0
A4 4  -2469 -2362 -3.83 -80.3 -.2473 -2442
A5 2  1050 -2456 1.28 -74.7 1051 -2531
A6 0  -17.2 0 7.96 0 -9.24 0
A6 4  -615 -420 -29.03 -9.37 -644 -429
A7 2  -15.7 0.90 1.55 -9.94 -14.2 -9.04
A7 6  250 -63.8 17.8 7.96 268 -55.9

The sum covers all of the complete cells in a sphere of 30-
A radius and should be an accurate result. Also included in table 12
are the results for the dipole contributions due to the presence of
dipoles at the fluorine sites (we shall discuss these terms later).
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As a second example, we choose a very low symmetry solid, YCl 3 ,
which is monoclinic space group 12. As can be seen in table 13, all the
ions are in very low point-symmetry positions, and each position can
have a dipole moment (another way of saying this is that each position
has a onefold field, Aim). We then have to consult the International
Tables for a higher symmetry position in order to 6atisfy equation
(175), which in this case is the site 4e with Ci symmetry. The Ci point
group has only the inversion operation, and all the odd-n A- vanish in
this symmetry. Thus if the position 4e is used, equationm(175) will
automatically be satisfied. The lattice sum for YC1 3 was also run over
a lattice 30 x 30 x 30 and only the even-n Anm are given in table 14.
The dipole contributions were also calculated; these calculations were
more complicated in this solid because of the three types of sites (Y,
Cl 1 , C12 ). For many of the Anm' the dipole contributions are much
larger than the monopole terms. This frequently happens when the hand-
book values for the dipole polarizabilities are used. We have had more
believable results when we reduce the polarizability to one tenth of the
handbook value.

TABLE 13. CRISTALLOGRAPHIC DATA FOR YCI 3
MONOCLINIC SPACE GROUP 12 (C2/m) (SECOND

SETTING) Z - 4

Ion Position Symmetry x y z

Y 4g C2  0 0.166 0
C11 4i Cs 0.211 0 0.247
C1 2  8J C1  0.229 0.179 0.760
- 4e Ci 1/4 1/4 0

Notes:
a - 6.92, b 11.94, c - 6.44, a - 90, a - 111.0,
y = 90.
Charges: gy = 3, = -1.
Polarizability: ay - 0.55 A3 , ac - 3.66 A3 .
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TABLE 14. LATTICE SUMS FOR Y SITE AT (0, 0.166, 0)
FOR YC1 3 , EVEN-n Anm ONLY, ALL Anm REAL

Lattice sum Monopole Dipole Total

A20 1738 3227 4965
A2 1  -913 2916 2003
A22 245 2574 2819
A4 0  -73.9 246 172
A41 85.8 -398 -312
A4 2  -41.3 47.7 6.4
A4 3  10.4 -791 -781
A4 4  -3.64 516 512
A60 -0.06 -80.2 -80.3

A6 1  -3.76 21.3 17.5
A62 3.35 -2/.4 -24.0
A6 3  -0.58 60.5 59.9
A6 4  2.73 39.2 41.9
A6 5  5.07 13.7 18.8
A6 6  8.14 -65.9 -57.8

The lattice sums given in tables 12 and 14 are incomplete in
that the results are not in a usable form for many of our computer
programs. Before we can use these results, the Anm should be rotated
using the standard Euler angle-rotation matrix, so that the lattice
sums, A' m, rotated from Anm by the angles a, 8, and y are

nmn

A' O mDm(a'aY)AAnm m" mrnmnm

Explicit forms for the Dn. (a,8,y) are given in Rose (1957, ch. IV).

4.3 Point-Charge Model Developed at HDL

4.3.1 Introduction

In the classical point-charge model, the crystal-field param-
eters, Bnm, for the crystal-field interaction of the form

H3 = B* Cn(i) (179)
nm

were calculated as
B = <rn>A , (180)

nm nm

where the <rn> are the expectation values of r n of the rare-eartn ion,
and the Anm are the multipole components of the energy at the site
occupied by the rare-earth ion. In the earlier models, the radial
integrals used in the evaluation of rn were taken from Hartree-Fock
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calculations (Freeman and Watson, 1962), and the Anm were calculated
using the point charges at the valence values for the ccnatituent ions.
These calculations generally gave the twcfold field 10 timus too large,
the fourfold fields approximately in good agreement, and the sixfold
fields 10 times too small.

4.3.2 Screenin_ and Wave Function Spread

Several errors in the classical theory were immediately
obvious. If the radial wave functions (Hartree-Fock) for the free ion
were correct, then these wave functions should give the correct values
for the Slater integrals F2 , F4 , and F6 . They did not for Pr 3 +. A
simple procedure was then applied. The radial wave functions were
assumed to be of the form

flr) = CR HF(Tr) , (181)

where T is a parameter, C is a normalization factor, and RHF(r) are the
Hartree-Fock radial wave functions. With the radial function given by
equation (181), the Slater integrals become

Fk = k
F k=F k (182)

HF

and it was found that a value of T of approximately 0.75 was needed to
fit the Fk that are found by fitting the experimental spectra of Pr 3 +.
Thus, the Hartree-Fock radial wave functions had their maxima too near
the origin and needed to be spread out even in the free ion, and perhaps
more spreading was necessary for an ion in a solid.

From the radial wave functions given in equation (181), it is
not difficult to show that

(183)

<f(r/T)>HF

so that any quantity that has been calculated using Hartree-Fock func-
tions is immediately obtained, particularly

k k k
<r > = <r > /T (184)HP

A second error of the classical method was the omission of
the Sternheimer shielding factors (Sternheimer, 1951, 1966; Sternheimer
et al, 1968). In 1951 Sternheimer showed that, in a multipo~ar expan-
sion of the energy of a oint charge embedded in a solid, the rn should
be replaced by rn - an), where the cn are the shielding factors. He
further showed that these factors were independent of azimuthal angle,
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that is, if the angular variation in the multipolar expansion was given
by Y , the an were independent of m. The values of a have been calcu-

+ + nlateg'for PrO+ affd Tm and are

02 0.666, 04 = 0.09, 6 - 0.04 for Pr3+ ,

3+ (185)

02 - 0.545, 04 = 0.09, 06 - 0.04 for Tm185

where the replacement is

rn +r r11(1- a (186)

More recent calculations of the shielding factors have been done
(Sengupta and Artman, 1970, and perhaps others), which we shall need if
further refinements of the theory are undertaken.

4.3.3 Effective Charge and Position

The crystal-field compone4ts, Anm, are a function of the
position of the ions in a solid; in solids such as CaWOA tne (W04 )-2

complex is known to be covalent. That is, the charges on the tungsten
and the oxygen ions are not necessarily at their valence values. If we
let the charge on the tungsten ion be qw, then we require that

q + 4qo = -2 (187)

with the charge on the oxygen being qo. The result given in equation
(187) then assumes that the Ca2+ site is purely ionic with charge 2.
This assurnption is consistent with many of the experimental results on
compounds such as CaWO4 or YVO4 . We introduced a second parameter, the
effective position of the oxygen ion relative to the tung3ten site that
would reproduce the effective dipole moment seen from the Ca 2+ site.
This parameter, r, is introduced by

R (effective) = nRo w(measured) , (188)

where R- is the distance from the oxygen nucleus to the tungsten
nucleus. Thus there are two parameters in the An,; qo' the effective
charge (th is eliminated by eq (187)), and n, the efective distance of
the. oxygen site from the tungsten site. The calculated crystal-field
parameters B then are

nmn

Bnrm(TI9On) - <rn>HP 1 aon) Ai(q O ,n)/T (189)

with the three parameters T, qo' and n.
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The experimental data that were taken at HDL on the rare-earth
ions in CaWO4 were analyzed using the effective spin-orbit Hamiltonian
(Karayianis, 1970), and a set of phenomenological Bnm was obtained.
These, given in table 15, are the Bnm that the theory has to fit.

The fitting was done by minimizing the square quantity given by

I [Bnm(.'uqor) - Bnm] 2  
, (190)

nm

where Br, j(T;qon) is given by equation (189), and Bnm is from table 15,
for each ion. The minimization was done with respect to T , qo0 and n
for each ion. Since the q0 and n are assumed to be ion independent
and T is assumed to be host independent, the average q0 and ri were taken
and fixed. The process was then repeated with minimization with respect
to T only. This process yielded the following:

qo = -1.09, n = 0.977 , (191)

and the T values were well fitted by

T = 0.767 - 0.00896N , (192)

where N is the number of f electrons in the configuration 4 fN. The
values of on used in the above were not varied in the minimizing process
but were interpolated from the values given in equation (185); that is,

a 2 = 0.6902 - 0.0121N

4 = 0.09 (all N) (193)

o6 = -0.04 (all N)

TABLE 15. PHENOMENOLOGICAL 8 FOR SIX RARE-EARTH IONS
IN CaWO4 (al in cm

101o 820 B40 944 B6 0  RE6 4  1964

Nd 549 -942 1005 -17 947 1
Tb 468 -825 872 -290 595 160
Dy 428 -825 978 -7 448 2.5
Ho 436 -664 779 -33 558 196
Er 404 -6A5 728 12 452 164
Tm 417 -689 754 17 504 339
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The predicted values of the Bnm(T;qo,n) for the entire rare-
earth series are given in table 16. The results giver, in table 16 when
compared to table 15 show that the difference between the derived

Bnm(T;qor) and the phenomenological Bnm is greater for the low-N ions
in the 4fN configuration. This may be a defect in the theory, but not
enough data on the low-N ions are available for analysis. One of the
significant results of the analysis was that it led to a reanalysis of
the spectrum of Tb:CaWO4 with a different interpretation of the experi-
mental data (Leavitt et al, 1974).

TABLE 16. DEIVED CRYSTAL-FIELD PARAMETERS, Bnm(T;qon),
FOR UN CONFIGURATION OF TRIPLY IONIZED RARE-RARTH IONS

(all in cm" 1)

N Ion B2 0  B40 B4 4  B6 0  RB6 4  IB 6 4

1 Ce 441 -1429 1462 16 1251 52
2 Pr 424 -1224 1253 13 996 42
3 Nd 408 -1059 1083 11 805 34
4 Pm 411 -1017 1041 10 764 32
5 Si• 408 -938 960 9 676 28
6 Mi 408 -887 908 8 626 26
7 Gd 406 -824 843 7 559 23
8 Tb 424 -856 876 8 591 25
9 Dy 428 -831 851 7 563 24

10 Ho 418 -756 774 6 488 20
11 Er 415 -707 724 6 439 18

12 Tm 4?5 -729 746 6 454 19
13 Yb 434 -701 717 6 429 18

The values used are
02 - 0.6902 - 0.0121N, 04 = 0.09 (all N),
06 - -0.04 (all N), T - 0.767 - 0.00896N,
q -1.09, and n - 0.977.

More recent work on CaWO4 (Morrison at al, 1977) obtains the
following values:

02 = 0.6846 - 0.00895N,
04 = 0.02356 + 0.00182N,

T = 0.75(1.0387 - 0.0129N),
06 -0.04238 + 0.00014N,
qo = -1.150, and

= 0.962.
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-i• The oa values are interpolated from the calculations of Erdos and Kang
* '1 (1972) for Pr 3 + and Tm3 

* The factors in equation (189) were combined
so that

S= <rn>(1 - an)/T (195)SP ~n'

and the pn along with the T are given in table 17. Thus we have

B n(T;qoin) PnAnm(q0,n) (196)

TABLE 17. VALUES MDR T, (rn>HF, on, ND pn FOR 4fn
CONFIGURATION OF TRIPLY IONIZED RARE-EARTH IONSd

Ion N T <•>HF <½iF (Hr F 2 04 06 P2 P4 P6

Ce 1 0.7693 0.3360 0.2709 0.4659 0.6757 0.0254 -0.0422 0.1841 0.7536 2.3417
Pr 2 0.7597 0.3041 0.2213 0.3459 0.6667 0.0272 -0.0421 0.1756 0.6464 1.8754
Nd 3 0.7500 0.2803 0.1882 0.2715 0.6578 0.0290 -0.0420 0.1706 0.5776 1.5897
Pm 4 0.7403 0.2621 0.1655 0.2247 0.6488 0.0308 -0.0418 0.1679 0.5339 1.4213
Sm 5 0.7306 0.2472 0.1488 0.1929 0.6398 0.0327 -0.0417 0.1668 0.5049 1.3210
EU 6 0.7210 0.2347 0.1353 0.1686 0.6309 0.0345 -0.0415 0.1666 0.4836 1.2503
Gd 7 0.7113 0.2232 0.1237 0.1477 0.6220 0.0363 -0.0414 0.1668 0.4656 1.1873
Tb 8 0.7016 0.2129 0.1131 0.1287 0.6130 0.0381 -0.0413 0.1673 0.4990 1.1232
Dy 9 0.6919 0.2033 0.1037 0.1119 0.6041 0.0399 -0.0411 0.1681 0.4341 1.0614
Ho 10 0.6823 0.1945 0.0954 0.0981 0.5951 0.0418 -0.0410 0.1692 0.4217 1.0119
Er 11 0.6726 0.1865 0.0883 0.0874 0.5861 0.0436 -0.0408 0.1706 0.4126 0.9826
Tm 12 0.6629 0.1790 0.0820 0.0787 0.5772 0.0454 -0.0407 0.1722 0.4053 0.9649
Yb 13 0.6532 0.1717 0.0753 0.0681 0.5683 0.0472 -0.0406 0.1737 0.3938 0.9120

aThe units of <rn>lUF and Pn are in An.

At present we use the results given in table 17 to calculate crystal-
field parameters given by equation (196) and use these parameters as
starting values to best fit experimental data. We generally use
Anm(q,fl) with T = I in the process (q here is the effective charge on
the ligands, not necessarily oxygen). Aftei obtaining the best-fit Bnm,
we return to the calculation of Anm(q) and vary q to obtain the best fit
by minimizing the quantity

Q = r - pnAnm(q)]2 (197)

nm

Following this, we obtain the Nm(q) for odd n and use them to calculate
the intensities using the Judd-Ofelt theory.

At present we have not included the dipole contribution to the
Am(q) but intend to do so as soon as possible. The old 7) in the three- A
parameter theory will be replaced by a, the polarizability of the con-
stituent ions in low-symmetry sites. We believe that this latter proce-

59



dure (including finding new p values) will give much better results
than obtained by the older theory. In our projected reanalysis we will
have the good phenomenological Bnm for R3+ :LaF3 , R3 +:LaCl 3 , and
R 3 zLiYF4 (these are reported by Morrison and Leavitt, 1981), and will
soon have R 3+ :Y 2 0 3 , in addition to the Bnm for R3 +:CfaWO 4 used in the
older theory. These data should be sufficient to form a very stringent
test of a newer three-parameter theory.

5. CRYSTAL-FIELD EFFECTS NOT YET FULLY INCORPORATED

5.1 Self-Consistent Point Dipole and Point Multipole

In section 4 we discussed the point-charge contribution to the
multipolar field components Anm. It was early recognized by Hutchings
and Ray (1963) that the multipolar" components of the constituent ions
contribute to the A at the si+te occupied by the rare-earth ion. For a
point charge eZi iocated at R from a rare-earth site, we have the
electric potential

eZi
*(+) . (198)

The potential energy of the rare-earth electron at r is

U(P) = -e0(r)

= -e2zi rn m + (199)

nim Rn+T rm i

where we have expanded the denominator of equation (198) in the spher-
ical tensors discussed in section 2. If we write equation (199) as

U ( •) = I A:•rnCnm,., ( r) , (20
nm

then ._ C (R 1 )

A (201)
rim n+1

where the sum on i covers all the ions of charge eZi in the solid. This
result we derived in section 4, expressed in slightly different form.
It seems natural to extend equation (200) to the form
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U(ý) - Ar)*OCnm(r) , (202)
nm
k

and relate t(e A (k) to the various k-pole moments of ligands at " To
relate the Anm) m the multipole moments, ek , we need first to express
the electric potential at the rare-earth electron due to the multipole
moment eQkq(i) at R.

The electric potential due to a multipole distribution at is
given by

k , (i )(2k+2n)1/2
•( ) •e ( -'• •kq 2n ) <n(m)k(q)jIn+k(m+q) >

;q
nm

(203)
C* km(Ri)

x •n+k+1 rnCn(r)
Rji

where

(2k+2n) . (2k+2n)!
S2n ' (2n)! (2k)l

(the details of the derivation of this result will be given later).
Thus, since U(1) -eý(•) we find, using equation (202), that

A W).-e2 (-I 2n+2k) 1/2 <n(m)k(q)jn+k(m+q)>- nm qi QqiL'2nq,i

* (204)
Cn+kmtq(Ri)

iX -

Rin+k+1

If we let k = 0 in equation (204), we obtain (if k - 0, q 0)

(0) -e 2  C Qo(i) Cn(Ri) (205)
Akin

which is identical to the result given in equation (201) if we identify
Q,(i) with Zi (the number of charges) given there. The result for k

A (1) e 2 1 Qq (2n+2) 1 / 2 <n(m) 1(q) n+1(m+q)> /

* (206)

n61
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since
!•: Qiq ' 1- - )qQl~

<n(m)1(q)!n+1(m+q)> = (-nm

Then with these substitutions in equation (206), we have

• •~~(1) -2 •4n1(n3 ~
e n= j2nT (i) <1(q)n+l(m qIn(m)>

nm lqq,i

Cn+i,m-q( R (207)
,X n+2

R.

which is indentical to the result previously published (Morrison, 1976),
if we identify eQ1 0 (i) =)Psq(i). Thus, if we knew the Qkq(i), we could
easily calculate tbye AnmbY using equation (204). Unfortunately, the

real difficulty is determining the Qkq(i). In what follows we shall
restrict our discussion to the dipole case, k = 1, and let eQ1q = Pq and
express the results in Cartesian vectors.

At sites of low symm,'try, an electric field can exist whose
value is determined by the various point charges of the solid. The
electric field due to the point- charges of the solid at a site of low
synunetry is given by

+0 1 (208)

and the field generated by the point dipoles is

E R5 i (209)
ii R4.ij j

The dipole moment at site j is then given by

pj • a[ro + ,! (210)

where a is the polarizability of the ion at site J. (If more than one
species is considered, the polarizability of each type must be used.)
The sum in equation (208) presents no problem and can be done quite
simply. To perform the sum in equation (209), it is convenient to
assume a fixed coordinate system in the unit cell and an associated
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reference point (say position 1); then each dipole moment, Pj, can be
related to the dipole located at the reference moment, ; 1 , by the sym-
metry operation of the crystal. Similarly, the field at each point,
" 9•j, can be related to Having done this, we can write

S - 1 , (211)

and from equation (210)

, [ + G(1) (212)

The result given in equation (212) can then be solved for the dipole
moment P, to give

+ +)0
Pl axB1.E 1  (213)

where

B=(1-c) 1

The result obtained in equation (213) is rather interesting; if the
polarizability, a, is near the reciprocal of one of the eigenvalues of
the G matrix, then the dipole moment becomes excessively large. This is
suggestive of the type of catastrophe that occurs in the onset of a
ferroelectric transition. Such a situation would, perhaps, be modified
by the inclusion of the higher multipole moments in the calculation. It
should be pointed out that the G matrix defined in equations (209) and
(212) is dependent only on the lattice constants and the symmetry of the
crystal. The results here were expressed in terms of Cartesian coordi-
nates but can equally well be done in spherical tensors. If higher
moments were considered the spherical tensor form is much more conven-
ient.

//
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TABLE 18. SPACE GROUP 88 (FIRST SETTING):
COORDINATES OF ALL IONS IN A UNIT CELL OF YLiF 4 AND

DIPOLE MOMENTS OF EACH ION

(P" P y and p, of site 1 are chosen as u,
v, and w respectively)

Site Ion x yz P, py Pz Qkqa

I F x y z U v V 1
2 F y -x -z v -u -w (- 1 )k(i)q

3 F -x -y z -u -v w (-1)q

4 F -y x -z -v u -w (-I) (-i)q

5 F 1/2 + x 1/2 + y 1/2 + z U v w I

6 F 1/2 + y 1/2 - x 1/2 - z v -u -w (-1)k(i)q

7 F 1/2 - x 1/2 - x 1/2 - z -u -v w (-I)q

8 F 1/2 - y 1/2 + y 1/2 + z -v U -w (-I)k(-i)q
9 F x 1/2 + y 1/4 - z U v -w (-1)k+q

10 F y 1/2 - x 1/4 + z v -u w (-i)q

11 F -x 1/2 - y 1/4 - z -u -v -w (-I)k

12 F -y 1/2 + x 1/4 + z -v u w (i)q

13 F 1/2 + x y 3/4 - z u v -w ( +q

14 F 1/
2 + y -x 3/4 + z v -U w (V1)q

15 F 1/2 - x -y 3/4 - z -u -v -w k

16 F 1/2 - y x 3/4 + z -v U w (i)q

17 Li 0 0 0 - - -

18 Li 0 1/2 1/4 - - - -

19 Li 1/2 1/2 1/2 - - - -

20 Li 1/2 0 3/4 - - - -

21 Y 0 0 1/2 - - - -

22 Y 1/2 0 1/4 - - - -

23 Y 1/2 1/2 0 . . ..
24 Y 0 0 3/4 . . ..

aThe last column relates those Qkq to the reference point Ok Thus
the Qk0 for fluorine are all related to alte I.

5.2 Self-Consistent Results for Scheelite Structure

The procedure given above is rather involved, so we shall go
into the derivation of the G tensor for the Scheelite structure (CaWO 4 ,
LiYF4 , etc). The space group for Scheelite is 88 in the International
Tables, the position of all the constituents is given in table 18. To
be specific, LiYF4 has been chosen, and the fluorine in site I at x, y,
and z has been chosen as the reference point for the dipoles (u, v, w)
and all other dipoles in the unit cell are related to u, v, and w. No
dipoles can exist at the Y or Li sites since the lowest fields at these
sites are quadrupole (k - 2).
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To evaluate G for the Scheelite structure, we shall choose the
ion at site I in table 18 as j in equation (209). The A in equation
(202), including the translational vectors (U in x, m in y, n in z), is

A
1i,1 (X+xi-x)aex + (m+Yi-Y)aey (214)

+ (n+zi-z)cex ,

where we shall, during this discussion, suppress the explicit dependence
of R on 1, m, and n. We write equation (209) as

-+d +d +d
E + 1 , (215)

where

i R

and

+d "pi

1 1, 5 'R (217)
1,1

where _,ms over i, m, and n are implicit. Then using table 18, we
write FI explicitly as

1

Fd u v u v + uR 3 3 3 3 R
x R 3 R 3 R 3 R 3 R 3 R R

1,1 2,1 33,1 4,1 5,1 6,1 7,1

+ v - v + u + v u v
R3 3 3 3 3 3 38,1 R9,1 R10,1 R,111 R1 2 , 1  R1 3 , 1  R1 4 ,1

u V

"+ 3-+ 3 (218)

R15,1 16,1

Then we can write

a 4

d
F u + V + (0)w (219)i" x P1 i-i R

=1 R ,1 R2i,3
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If we let G - G' + 3G" and restore the X, m, n sum, we have

G' = I (, (220)
xx

£,m,n i=1 R21+ll

G' = (-1) (221)xy3 X£,m,n i=1 R 2 i

G' = 0 * (222)
xz

By similar methods we obtain

8 1
G' = I (-1) - - - , (223)zz 13 3

zz £,m,n i=1 R, Ri+8

and the G' tensor is symmetrical.

To evaluate the G" term, the procedure is precisely the same as
to evaluate the G' term, except that we relate this to equation (217).
"It is convenient to express Ri 1 -P. explicitly in tabular form as given
in table 19 for easy reference when writing out each term of G". We
shall not write out the detailed expression as in equation (218), but
this procedure gives

8

G" - (-I)i[X 2  - X Y (224)Xx [X1 2+1 21 Xi2i],(24

ii
8G" " ('1)i[xci " X2 i1 lY 2i_] ' (225)

xy i,

8 )

G - ;= (-l) xi zi - x z1+8] , (226)Sxz i8+

8.

G - . (-1)i[YiZi - Y +8Zi+8] (227)
yz
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8
Got (-1):L[Z2 -Z2+I (228)

zz

where

X'' a 2x(i)y(i)
R1 5

2 a2 x~)2

Y2 a axy(i)2

SR 1

X , acx(i)z(i)
SRi 1

and all of the sums in equations (224) through (228) have the sum over
it, m, and n implied. The G" is symmetric (this can be shown directly
from evaluating, for example, G' and G" independently).

xy YX

TABLE 19. VALUES OF R P FOR DIFFERENT SIRES IN SCHEELITEa

Site P, P zR -P

I U v W XM1u + y(l)v+ Z(1)w
2 v -U -W x(2)v -yC2)u - z(2)w

3 -U -V W -() - y(3)v + z(3)w
4 -V u -W -x(4)v + y(4)u - z(4)w
5 u v W x(5)u +- yC5)v + z(5)w
6 v -U -W x(6)v - yC6)u - zC6)w
7 u -V w -x(7)u - y(7v + z(7)w
a -V u -W -x(8)v +- YCS)U - Z(B)v
9 U v -W x(9)u 4+ y(9)v - Z(9)v

10 v -U W x(10)v - Y(1O)u +- z(lO)w
11 -U -V -W -X(ll)u - y(11)v - Z(11)w
12 -V U W -x(12)v + y(12)u - zC¶2)w
13 U v -W x(13)u + y(13)v - z(13)w
14 v -U W x(14)v - y(14)u 4- z(14)w
15 -U -V -W -x(15)u - y(15)v -z(15)w

16 -V u w -x(16)v - y(16)u -z(16)w

ax(l) + A. . X1 , 11(1) m U y - y,, z:i± n +l -, 2.
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The equations for G' and G" were talculaLed for several lat-
tices and the results are given in table 20. The crystal axial field
components, Ano were computed for JaWO4 using a = 2.4 Al and oxygen
charge of -2e, and using a = 0.24 A and oxygen charge of -e. The
results are shown in table 21 (Morrison, 1976).

d After the above work had been done, the dipole terms in the
A were programmed for a -;,mputer for all the 230 space groups. In
the program any number of inequivalent sites can have an associated
dipole moment (we only considered one type of site above). Recently the
members of P. Caro's group in France and G. F. De SA's group in Brazil
(Faucher and Malta, 1981) have included the dipole and quadrupole moment
in a self-consistent manner for LaCI 3 and have found that with the
reported values of the dipole and quad~upole polarizabilities the re-
sultant Aq is much larger than A or Anm nm n'n

5.3 Self-Induced Effects

When a rare-earth ion is immersed in a solid it is possible for
its electrons to experience a field due to the reaction of the medium
back on the electrons. Both this type of field and the external fields
due to the point charges of the medium can exist. This reaction is
identical to the classical problem of a charged particle interacting
with its induced image in a conducting plate or sphere. The interaction
was recognized by Judd (1977), and it was he who suggested the polar-
ization of the ligands as u possible source of a two-electron crystal-
field interaction. In this section we shall consider the development of
this interaction as derived earlier (Morrison, 1980), using the same
technique used in the earlier work. In later sections this interaction
will be developed in a more general way, deriving the m'iltipolar inter-
action.

+

We consider an eler-tron at r on a rare-earth ion and a ligand+
at R with polari7ability a. The electric potential created by the
electron is

-e (229)
IR-rl

The electric field at the ligand is

E -VR ,

where VR indicates that the derivative should be taken with respect
to R. Then,

+ ++
E + - (230)
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The dipole moment induced on the ligand is given by

+ = AI ,(2 )

where a is the polarizability of the ligand.

Now if we consider a dipole at some arbitrary origin, the
electric potential at point R1 from that origin is

1 -(232)

R 3+
R1

To find this potential at the electron itself, we let R, -(R-r). Then
equation (232) becomes

+p+ (R-r) (233)

IR-ri

The energy of the electron interacting with this potential is given by

U(rR) = y 1 (r)

(234)
e •_(R-r)
2 +_+3 'I R-r 3

where the 1/2 is due to a self-interaction. We can write

++
R-r =V 1 (235)
+_+ 3 2R +3

IR-rl IR-ri

Then equation (234) becomes

+ -e V 1
U(r,R) = -• p * , (236)

and similarly
+

E e ++ (237)

SIR-rI

Using the result of equation (237) in equation (231) and substituting
the result into equation (236), we have

U( r,R =- a 2  (238)
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wher V operates only on the function on its immediate right. To
further reduce the result given in equation (238), we consider the!• operation

} v(,,2) ,v2, +,2v%+ 2(v*)(,2 (239)

If and satisfy Laplace's equation (which they do), then

2(*'2) "2(V*,)'(V*2) "(240)

If we identify+*, and 1)2 with 1/1R -r in equations (238) and (240), we
can write U(r,R) as

2
U(+,+ -ae 2 1

U4R,) =.j-12 • (241)

To proceed further we must expand the factors on the right side
of equation (241). First we notice that

+ + 2 2 2 + +
IR-rl =R +r - 2rR

(242)R 2 +r 2 ;•
= 2 L-L•- e

If we let

R2+2
R 2+r (23

t = - , ( 2 4 3 )
2rR

then

+ + 2 2rR ' t-z (244)

with z = r*R.

The expansion

t- = z ( 2n+l)Qn(t)Pn(z) (245)
n

is given by Rainvii]e (1960); the leading term for large t is

Q (t 2~(I~( 246 )
Qnt) M t n+1(2n+1)l
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From equation (243) we have
22n+1 (n)2 rn+1

nCt) = (2n+1)I n (247)

for large R.

Substituting the result of equation (247) into equation (244)
gives

22n 2 n
1 22(nI)r (

SR-r 2 . (2n)IRn+
2 r n(Z) (248)

From the Legendre addition theorem, we have

Pn(Z) Pn(r R)

I • Cnm( )C*m(R) (249)
nm n mR

and

22n nl2 nA12 C n ()C* (R) (250)nR-r2) Rn 2  nm nm

2
The remaining necessary operation is VR, which can be written

2 =1 d 2 d) (L)
2 ld- (R - -_(LZ) . (251)VR R2 dR dR R 2

The only term in equation (250) that this operates on is

C* (R) (252)
Rn+ 2  nm

Using equations (251) and (252), we have

V2 [r-n-2C*m(R)] AA Ce(4) (253)

Finally,
A/

V2[Rl±in"2 ((R1Cm(R)] Rn+ 4  , ( (254)

where we have used

(t)2Cn(R) - n(n+l)C nm(R) , (255)
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a result we discussed in section 2.1. The result in equation (254)
substituted into equation (250) gives

S2 .1 22 (n1ln)(n+1)l rn

VR 2 (2n) C (r)C* (R) . (256)

The result given in equation (256) is substituted into equation (241).
This result, when summed over all ligands at ftj with polarizability aj,
produces

2 _22n+ln1 C*(nl)l
-[ 2nn1(n+1)1 n+ n

U(r) - (r C r) (257)4-i-" J; (2n• R _n+4 "1 nm

If we write equation (257) as we have previously done with the point-
charge model,

U(r) ( N 'A)" rnCn(r) , (258)
nm

we have

ASI .tel2 2 2n+ n(n+1)1 aI nm(j(29nm \4 (2n)I . Rn+4 (259)

which are the self-induced crystal-field components due to induced
dipoles only. Higher order multipole moments can be induced on the
ligands, and these multipoles will contribute a correction. From pre-
vious experience, we should anticipate the total self-induced multipole
fields to be of the form 0I

A SI = A ASI(k) (260)nm k=1 nm

SI 1
with the result above being A (1).

nm

As in the point-charge model, if we express all lengths in A
and Aj inA 3 then equation (259) becomes

A SIM 0 Xo 2 2n+ In (n+l)I ajCnm(Rj) (261)

r \5 10 (2n)I ' n+4

to express ASI in units of cm-1/An (a/8w x 108 = 29,035).nm
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6. MISCELLANEOUS CRYSTAL-FIELP EFFECTS

6.1 Judd's Interaction for Two Electrons

The interaction considered here is a development of a sugges-
tion by Judd (1977) concerning a possible origin of two-electron crys-
tal-field effects. Specifically, Judd suggested that such terms would
arise if one of the electrons in the configuration 4 fN polarized a
nearby ion, and the remaining N-i electrons interacted with the induced
multipolar moments. The investigation of this interaction was performed
later (Morrison, 1980), assuming only a dipole polarizability. The
interaction for two electrons that resulted is

V(1,2,R) I F (abk)raC.,(rl)r^Cb q. )br 2 )
a1z

b,k,q
A ((262)

C- (R)
x <a(a)b(q-a)Ik(q)> ab

where

F(abk) = - e _)<a(0)b(0)Ik(0)>[(a+b+1)(a+b+2) - k(k+1)]

and a is the dipole polarizability of the ion at R.

The development of the result given in equation (262) was
similiar to that given in the derivation of the self-induced field in
section 5.3. For the full multipolar result we shall use more general
methods.

The electric potential of an electron at r as seen at a ligand÷
at R, is

O(l -+ (263)

where 
1

R1 R r

The multipolar inducing field Enm at can be defined by1/

E ÷mxn X) (264)
nm

By expanding equation (263), we obtain

C* (R1 cncn (,)• n
+ -e I ( 1 )n Cnm (x) (265)

nm R1
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then comparing equation (265) with equation (264) gives

Enm e(- 1 1)/R1 (266)

The multipole moment, Qnm' is given by

QnminanEnm a (267)

where the multipole polarizability is a n

The electric potential at an arbitrary point R from a multi-
pole distribution is given by

Q* Ck)S ÷ Qminm 3)
R = m n+1 (268)

~R3

and the energy of an electron at r2 interacting with the multipoles is

U eQ = = -R 2 ) (269)
(3=

with R 2 r 2 From equation (268), we obtain

U -e X Q n1 (270)
nm R2

Now from equations (267) and (266) we have

1)n (RI
"nm =en(1)n C ' (271)

which, when substituted into equation (270), gives

• ~~~ ~ C (R,•,• C-e (R•C~(
Snm 1- jm 2 (272)

nm RI K2

If we write

U (nrr2 r (273)

n
we have A

C* (R1) C.(R(n) 2 Cn 2 )

Unrlr 2 1R =-en a _n+1 Ri*I (274)
m R R

1 2
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If we were considering the self-interaction, at this point we would
let A2 = and take half the results. The sum on m would then collapse
to unity and U(rlir 1 ,s) -

However, the two-electron interaction is more complicated. We
use the two-center expansions to obtain

C(R) 2a+2n1/2 ra .()(2a) <a(c)n(m)Ia+n(a+m)> C(R)
Rfn+1 aa 2a+n+I a+na+m

(275)

where R1 R-r 1 , and

nRn+1 2b2 2 b+n+1 Cb+n, 8 +m(R)
2 R(276)

where

2 = R-r2 "

As indicated in equation (272), equations (275) and (276) are
to be multiplied together. When these two equations are multiplied, the
two spherical tensors in R can be recoupled as

C (R)C (R) = (-1)+m Y <b+n(O)a+n(O)Ik(O)>a+n'a+m( Cb+n'8+m k(27

k (277)

x <b+n(8+m)a+n(-c-m)Ik(8o-)>Ck, 8 _ (R)

where we have used
A ci+m An_•mR

C* (R) - (-1) C(R) . (278)a+n, a+m no-

It should be noted that the resultant projection in equation (277),
[Ck,._t(R)J, is independent of m. Thus with a proper recoupling of the
C-G in equations (275) and (276), the sum over m can be performed.
Selecting the independent terms from the product of equations (275) and
(276) and the result of equation (277), we have

S I (-1)m+a<a(a)n(m)la+n(a+m)><n(m)b(8)Ib+n(8+m)>
m (279)

x <b+n(S+m)a+n(-a-m)Jk(8-a)>
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whih, henfurther reduced, gives

U~n r *e 2 % an <b+n(0)a+n(O)Ik(O)>[(2a+2n)(2b+2n)I1/2

b$ (280)

(X rs CRr

Thus the f inal desired 'result is obtained if we know S. In equation
(279) we rearrange the C-G as follows:

<a(a)n(m)la+n(a+in)> - (~)~(a2n+1)/ <a(-a)a+n(a+m)In(m)>

<______1~nS~) - -)- 2+n11/2 (281)
(rim~b0)b~n8+)> (~)fft 2b~+1) <n(m)b+n(-$-m)Ib(-$)>

We then recouple the two C-G on the right to give

XV'(2f+1)(2n+1-) W(a,a+n,b,b+ninfka&+n(a+m)b+n(-8-m)If(cg-8)> (282)

f

The sum on mn can now be performed (note that the phase, (- 1 )m, in eq
(281) cancels the (- 1 )in in eq (279)) if we change the phase in the first
C-G on the right side of equation (282). This then fixes the sums on f
at k. Thus

S (1 k-b+n (2a±.n%.q 2I+2n+1 11/ P2 VM
(283)

x w~~a~nb~b~~nk<&(-~k~aO~lb-"-

The C-G in equation (283) can be rearranged to give

1/2
S (- I)a[(2a+2n+l)(2b+2n+1)J W(a,a+n,b,b+n~nk)<a(a)bCo)Ik(ct-0)>

(284)
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If we let

Fn(abk) -(c 1 e 2 )<a+n(O)b+n(O)Ik(O)>v'(2a+2n+f I•(2b+2n+1)
(285)

x W(a,a+n,b,b+n;nk)[(2a+2n)(
2 b+2n)11/22a 2b'

then, substituting into equation (280), we have

un ÷rl2'R = a b F (abk)r rb I <a(a)b(q-a)Ik(q)>Ca (r,)Cb q-ur 2 )
Sa,ba

k,q

C* (R) (286)

xRq+b÷2n÷2,

which is the final form of the two-electron multipolar interaction. To
obtain the result given in equation (262), we would have to relate
<a+1(O)b+1(0)Ik(0)> to <a(O)b(0)Ik(0)> and evaluate W(a,a+l,b,b+1,lk),
both of which can be found in Rose (1957: 47, 227). If this is done,
then equation (286) will reduce to equation (262). In a solid the
ligands at R are such that, when the sum is performed over the ligands,
only certain k and q survive. Much of the above derivation has been
given by Judd (1976) in a different context, and many of his elegant
techniques could be used to simplify the resulting expressions. For
example, using Judd's notation (1975), equation (286) becomes

u(n),÷a b+C
U r , = r Fn(abk)rlr 2 [ (rl) ,r 2 )]k2ck(R)/Rab+2n 2 7)

Ln 1 2ab
S~k

where

[Qa(1)Q)(2)]kq = [ <a(a)b(q-at)lk(q)>Cao(rl)Cb,q-o(r 2 )

The tensor in orbital space, given in equation (286),

T (a,b) = <a(a)b(q-a)Ik(q)>Ca•rl)Cb 2J , (288)
kq aa(1Cbqa(2

should be considered carefully. For a fixed value of k the number of
terms in the sum over a and b is restricted by a + b < k; for equivalent
electrons a and b are restricted to even integers; and for 0 < (a,b)
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6, the total number of terms is not excessive. But since a and b can
reach the maximum value of 6 for the configuration 4 fn, the value of k
in the k sum (similiar to the lattice sum) must go up to 12, that is, k
S12.

If as in previous work (Morrison, 1980) the sum over all the
electrons is performed in equation (286) along with the sum over the
ligands, the results are

H (nR) 1= /2 U u(n)(r, rj,R) , (289)
ij

R

where the factor 1/2 accounts foi the self-interaction terms that are
present when an electron interacts with its own induced multipole, as
well as for the interactions that occur twice when i # J. This inter-

action contains a large number of corrections to the free-ion param-
eters, a few of which shall be discussed in the following.

6.2 Slater Integral Shifts

The Slater integrals for the free-ion interactions are given by
the Coulomb interaction as

2
He (290)

i>j i-r

which for equivalent electrons can be written

k Fq (k)c (rj Cq;(), (291)
k,q

where
rk<

(k) 2 fo foo r <2
F e r [R(r)R(r dr~dr0 0 k+1 n>n 1 2

r >

Since the interaction represented by equation (291) is spheri-
c)jjy symmetric in the space of all the electrons, corrections to the
F can only arise from terms in an interaction that are spherically
symmetvic in the space of the electrons. Thus, in equation (286) if we
let k - 0, we have such an interaction, and the fol'lowing results are
achieved:
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rn(3bO) = -%ne 2 <a+n(O)a+n(0)I0(0)> .'(2a+2n+1)(2b+2n+ 1 )

x W(a,a4n,a,%+n;nO) [(2a÷2n)(2b+n)] (292)•2a J•2b .

- -. ne 2 (- )a+n(2a+2 n)/I/ 2 a+ 2 n+,

where we have used

a-a<a(a)b(-a)10(0)> = (-1) -/2b+- 6 ab (293)

and

1/2
W(aa+nI,aa+n;nO) = (-1)n/[(2a+1)(2a+2n+1)]

Then equation (286) becomes
0* (r)aa2

u(n){.1 r 2,) r _e2 • (2a+2n) a a aCci()Caa.;2)' =2a r 1 r 2  R2 a+2 n+2  (294)
a R

which is the same form as equation (291). Thus,

(k) ~2+2n' 1  <ra>]

AF = -() a(i)e2 a 2a+2n)2 r.2a+2n+2 (295)
n n a 2 R.2+2+

1

for the Slater integral shifts due to the electron multipolar interac-
tion with the ligands of multipolar polarizabilities a n

6.3 Shifts of Energy Gap 4fN-4fN-Int

The shifts in the energy gaps between the 4 fN- 4fN-lnt dis-
cussed here are dependent on one-electron operators, and it is best to
begin the discussion by returning to equation (274) and proceeding from
there. As mentioned following equation (274), the self-interaction is
obtained by letting 2 1 in equation (274), obtaining

2e 1

u(n) (+ + n 1
U (r R) (2962 2n+2 * (296)

R

where ,A r. Th uantity R1° in equation (296) can be expanded
as in equation (242):

2n+2 [R2 + r 2 
- 2 AoP]n+l (297)
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or

R~n+2 = (2Rr)n+l1t-z]n+l (298)

where

t = (R2 + r 2 )/2rR (299)

and

z= . (300)

Then we have 2
u(n)( + n 1 1

rR) 2 (2Rr)n+1 lt~zln+1 (301)

the expansion

t 1z ( 2 k+l)Qk(t)Pk(z) (302)
k

is given in Rainville (1960: 182). Also we can write

1 (-1)n dn 1 (303)

(t-z)n+l n! dtn t-z

For our purposes here we want only the k = 0 term of equation (302)
(P 0 (z) = 1). From equation (301) we know

2

(n) -e 1 (-1) (n)
U (r,R) 2 (2rR)n-I n! f 0 (t) (304)

By using equation (303) in equation (302) with k = 0, we get

Q (t) = t t 3  + . * • (305)

and

(n) )nnt-n-1 n (n+2)t-n-3 + (306)g0(t) n(It + (_1)n 6(n+2)l(060 6"

Using equation (306) in equation (304), we have

S2
u(n)) n I 1 (n+l)(n+2)

(rR) 2 )n+1 n+ + n+3 (307)
S(2rR tn+ 4-1 6t
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For large R > r, equation (299) gives
R

t =-R2r

Thus equation (307) becomes

(rR) = -e n I + (n+1)(n+2) 1  (308)U~n) ('R) =R 2n+2 R 3 2n+4J 38

The result given in equation (308) is a generalization of the
result (Morrison, 1980) for a ligand with dip'ie polarizability (n = 1

in equation (308)). Thus we have, for n = 1,

( )2 2(1)-e2 a 1 2r2

U (r,R) = -e,' + L , (309)
WR"

where we have written a = a. In the remainder of this section we shall

discuss only the dipole part of the interaction as given in equation
(309).

If we let W4 f represent the lowcst energy of the 4f configu-

ration and let WnI,, represent the corresponding energy of the 4fn-ln'£

configuration, we may write W = 'Vif + and ' W~n', +

where djf and _ Z,'are the corresponding quantities in the free ion

and A and A are the shifts represented by equation (309). Thus,
4f . ni'

we can write

S1 A ,0  
- (r 2> - <r 2  ) (310)

ft2 fRI 6 94fR6

where <r 2 >f, = <4fN-1n,£Ir214fN-In'.'> and <r2* 4 f = <4 fNIr 2I 4 fN>-

Tle result in equation (310) is for a single ligand at R, and if we let

there be Zi ligands -it Ri with polarizability ail we have

2

ft'L" (311)

.R.
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where 02 <r 2 >fk' - <r2 > Since, in general, <r2>ft, is greater than
<r >4f, we have the result, observed experimentally, that the free ion
interconfigurational energy gap is reduced when the ion is embedded in a
solid. This result is intuitively obvious, since the presence of the
polarizable ligand tends to counteract the central potential of the
rare-earth ion.

Recently, Yang and DeLuca (1976) have measured the energy
difference of the lowest 4 fN and 4 fN 5d configurations for Nd3 +, Er3,
and Tm3 + in the host materials LaF 3, YF3 , LuF 3 , and LiYF 4 (table 22).
The distances of the nearest neighbor ligands are given in table 23 for
the compounds re ported by Yang and DeLuca. We computed the values
of S = [iiZie 21/R1 from the results of table 23. With all quantities
measured in angstrom units, S = C01(ciZi/RA), where C0 = 116,140 and
the units oS S are cm- 1 /(A) 3 . The polarizability of flourine is assumed
to be 1.0 A . Experimental values of 02 were computed from the results
of table 22 and the appropriate value of S. If it is assumed that the
values of a2 are dependent on the ion only, these a2 should be rela-
tively host independent. With this assumption, the average value for 02
given in table 24 can be used to calculate the energy shifts of any
host, if the x-ray positions and the polarizability of the ligands are
known.

TABLE 22. EXPERIMENTAL. ENERGY (IN UNITS OF 103 cm-i 1 ) OF LOWEST
ENERGY LEVEL OF 4fN'15d F)R FREE ION, Atd AND Afd

Ion Free iona 'aF 3 b YF3 b LUF 3 b LiYF 4 b

Nd 70.1 60.0 58.4 57.1 54.6
Er 7E.4 64.7 64.3 63.8 62.5
Tm 74.3 64.4 63.4 63.0 61.5

aSugar and Reader, 1973, Chem. Phys. 59, 2083.
byang and Deluca, 1976, AppI Phys. LeJt. 29, 499.
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TABLE 23. LIGAND DISTANCE, R (A), AND MULTIPLICITY, Z, FOR
COMPOUNDS LISTED IN TABLE 22a

Compound Ligand distances (multiplicity)

LiYF 4  2.245 (x4) 2.293 (x4) - - -

LaF 3  2.246 (x2) 2.416 (x2) 2.443 (xl) 2.49 (x2) 2.64 (x2) "
YF3  2.253 (xl) 2.253 (xl) 2.266 (x2) 2.299 (x2) 2.323 (x2) 2.595 (xl)
LuF 3  2.191 (xl) 2.243 (x2) 2.257 (x2) 2.257 (xl) 2.277 (x2) 2.618 (x1)

aX-ray data used in these calculations are from C. Keller and H. Smutz,

1965, J. Inorg. Nucl. Chem. 27, 900, for LiYF4 ; A. Zalkin, D. H. Templeton,
and T. E. Hopkins, 1966, Inorg. Cher. 5, 1466, for LaF3 ; and A. Zelkin and D.
H. Templeton, 1953, .7. Am. Chem. Soc. 75, 2453, for YF3 and LuF 3.

TABLE 24. SUM S (cm I/A 2) OF EQUATION (313) FOR VALUES IN
TABLE 23, Aid - 6fd FROM TABLE 22, AND 02 COMPUTED FROM EQUATION (311)

Nda Era Tma
Compound S

AOd-Afd 02 "d"fd 02 A~d-Af 02

LiYF 4  6815 15500 2.274 12900 1.893 12800 1.878
LaF3  5184 10100 1.948 10700 2.064 9900 1.910

63 6898 11700 1.696 11100 1.609 10900 1.580
LuF 3  7516 13000 1.730 11600 1.543 11300 1.503
Av 2  - - 1.912 - 1.777 - 1.718

aYang and DeLuca, 1976, Appl. Phys. Lett. 29, 499.
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The results obtained for the three ions studied here agree
qualitatively with what would be expected from the usual lanthanide
contraction (Reisfeld and Jorgensen, 1977), that isr 02 (Nd-3 ) > 02 (Er 3+)
> 02(Tm3+). A more extensive comparison of equation (310) with the
experimental data in oxide and chloride host materials is necessary
before any quantitative claims can be made. Nevertheless, the results
indicate that equation (310) can be a useful rule of thumb indicating
the host dependence of the energy spacings between the various configu-
rations of rare-earth ions.

The results here can be used to predict a host-dependent spin-
orbit parameter by using equation (309) in the usual spin-orbit Hamil-
tonian for a central potential:

h2e2 Zici
S 2 2 Zi a , (312)

mc 2i R
1

Similarly, the result given can be used to give host-dependent Slater
parameters as

AF(k) f <rk>f 2 (313)

1

where the various quantities are the same as in equation (311). The
result given in equation (313) has been noted (Copeland et al, 1978) for
a general two-electron interaction and is intimately related to a pre-
vious result where the ligands are replaced by an isotropic solid. In
'iew of the difficulty of choosing the parameters used in the result
given ir Morrison et al (1967), it would appear that equation (313) is a
preferable form.
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The foiX owing equations include the most commonly used relation-
ships needed for arriving at the results given in the main body of the
report,

A-1. CLEPSCH-GORDAN COEFFICIENTS

A-1.1 Relation to 3-j Symbol

- .'?c> (_1)-a+by(a b (A-i

h-1.2 Symmetry

&- 2c + 1 <a(ct)c(-y)Ib(-aBb (A-4)

(In eq (A-1), (A-2), (A-3), and (A-4), a + 0 - y.)

A-1.*3 Orthogonality

6 cc Ia(a)b(-y-c1)Ic(y)><a(u)b(y-a)Ic'(y)> (A-5)I 6 aabyaU~)<~l~~la~cy) A6
A-1.4 Sk2cialValues

<a(O)b(O)jc(O)> (_1)9/2 (2c + 1(A-7T)s
s + T) T(sj)T(s2)T(s3)(A7

where

81--a+b4.c, 82 - a-b+c, s3 - a+b-c, s a+b+c

and
T(s) =

wits-
(2a) 2b /2

<aab0=+~+) aa(b (A-8)

(ab+a+$
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<9(O)k+2(O) It (O)>

- (c+1) [r22±k+2)(U-.k] 1/2 <P.(O)k(o)It(o)> (-9

A-2* WIGNER-ECHART THEOREM

A-2.1 Tensor Tkq (in L Space) Only

<LIMITL> <L(M)k(q)JL'(M')><L.'fTkIL> (-0
''kq =k (-b

ek
4A-2.2 Mixed TensorT

e iS pae roecioX)

K in L space projection q

<LML 'ML~kqI LIMLSM><(SK;)SMA>A-1

x <LISgI1T~klILS>

A-2. 3 Matrix Elements of Crystal Field

<JIM'L'S'1 I HIMLS>

-~Bkq<J(M )k(q)iJJ(MI)><JILISUU ()IIJLS)9/2.t+1<9IIC kIt> (A-12)
kg

<JILSNUk HIJLS> u2J-+1W(kLJ'S;L'J)(L'SQUUULS) (A-13)

(The matrix elements (LUS~IALS) are tabulated in Neilson
and K~oster, 1964.)

A-2.4 Mautrix Elements of Spin-Orbit Interaction

<J'MIL'S'IH2IJLS> _;['t(ZXt1)(2R,+1)]1/2 6 JJ 16tM

X W(lSL'J;S'L)

x (L'S'1V 1 111LS) (-4

~1 102
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(The matrix elements (L'S'INV 1IULS) are. tabulated in Neilson
and Koster, 1964.)

A.-3* COMMUTATION RELATIONS

A-3.1 Angular Momentum Operators

(i I i ( 7

A-3.2 Spherical Tensors

[v,,,fir)Ckq <1 (ii)k(q)Ik'(q+Pj)><1(O)k(O)Ik-(O)>CIqsi

[,rckq] k /-K

In euatinb (-21)throgh (-23)(A-21)r)

v~103

IV lkkl--k2+)12 <~ )(Aj-(" >k 1C -~ ,(-2
[v~~~ 

_ __-1Cq ( -3

z- [(~l (2~l)'/ <~q 1(p jk 1(~j)>rk-C +1q9

in euatins ( -21 thrugh A-2), Cq Ck (1)
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A-4. RACAH COEFFICIENTS AND 9.-j SYMBOLS

A-4.1 Working Definition

<a(Qt)b(B)le~cx+B)><e(cs+o)d(6)Ic(d1+B+6)>
(A-24)

- 2e l)1Tr -+iT W(abcd;ef)<b(8)d(6flf(B+6)><acaf0+6)IccI4.+6)>
f

W(abcd; Of) b cdfb6  (A~-25)
V (2b+l ) (2d+1)T

A-4.2 Orthogonality

S(2e+1)(2f+l)W(abcd~ef)W(abcd;eg) 6 fg (A-26)
e

A-4.3 Relation to 6-j S cio

W(abcd;ef) -(-l)a +b+c+dia b ei (A-27)

A-4.4 9-j or X Symbol

X(abc,def,ghi) (2k41)W(aidh~kg)W(bfhd;ke)w(aibf;kc) (A-28)
k

6 fsgh(-),:g-- W~bd;cg)
X(abc,def,ghO) - _____ (A-29)

V(2c+1 )(2g+1)

A-5. SPHERICAL BASIS VECTODRS

A-5.1 Unit Vectors

;-l 1(ex I: ieyJ/Vfl (A-30)

so = e (A-31)

(- (l)Pe_ (A-32)

e*.e - 6li (A-33)

e~xe;v - -12 <1(v)1(Ii)t1(U+v)>eIj+v (A-34)
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A-5.2 Examples

" - ;• (A-35)

tn 6*8

(A-37)

r - e*C L(r) (A-38)

A-5.3 Generalizations

Let Aft, Bb , etc, be spherical tensors and define

A -B = (-)a A B -.A
-a aa a,-a -a -a

(A and B commute.)

JA a I1 cr - <a(G0b(y-cz)!C(y)> A auBboy-a.

Then

-()a~i AR4

A-6. EXPANSIONS

I - A-6. Addi tion Theorem /
rk (R) Clr)C,*qlR) (A-39)

Pk( -R) - 4 Ck(r)C(R

C ) (Pk is a Legendre polynomial.)

Caa(r)Cb(r) <a(O)b(O)Ik(O)><a(ct)b(o)Ik(a+8)>Ck,•+(r) (A-40)
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TKQr~ 2  <a (a)b (9-o)IK (Q) Caur)
K~rrj~2) - ((A jr)

- ý(l^b(r 2)J KQ

V rkC (r)Cq (R)

k A A

-I- C, (r)e C (R) (A-43)
k Kk~ k

A-6. 3 'Two-Center Expansions

1(2a+2b) 1/2 [CA a(R

abýT2a [ a (x)Cb(^Jab a+bR) Ra+b+l (A-44)

+ q~ p C kq(y)Cq(R-x) (-5

C kg(R-x)

(A-46)

2a-2-1 /2 A a
= ~(1i"')'<a(a~k(q)ta+k-(Qx-qbC* (x)C (R) X

aa 2 aa a+k,ax+q Ra R+k f

A-6.4 Miscellaneous Expansions

2 (2~l~i(,Xrk (R)Ca(;)C* (^R) (-7

(in(z) - V'771r I~ 1 2( k(z Vi7 lf+/(uI and K are
Bessel functions.)

a (2a+1)Ja (Xr)[ya(AR) + ij (X ) C ( )a*. R (A-48)

X 14 act

(.and yare spherical Bessel functions.)
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APPENDIX B

B-1* INTRODUCTION

The dominant quantity in electrostatics is the electric poten-
tial. Once having found the potential, we can obtain all other essen-
tials by suitable operation on the potential. In particular, if the
potential, *(r), is given, then the electric field is obtained by taking
the gradient of *(r), that is,

= -V*(r) . (B-i)

In equation (B-I), it is assumed that * is a functioiu of the general
field coordinates r; however, since 0 may also involve other coordinates
in a complicated manner, care must be taken to separate the field point
from other coordinates so that the gradient in equation (B-i) is with
respect to r. We shall always here interpret the gradient operator in
equation (B-I) to be taken with respect to the field point r.

B-2. EXAMPLES

A few examples will suffice to clearly illustrate the above
points.

B-2.I Point Charge at Origin

If there is point charge q at the origin of our coordinate
system, then the potential at the field point r is given by

q

+Ir
r . (x2 + y 2 + z2)1/2 . (B-2)

The electric field for this simple system is given by -grad *, and is

Sqr (B-3)

since

I r
(B-4)

r r
The relation given in equation (B-4) can be worked out in detail by
taling each vector component of V as

fV

It I ,cxj by 1  +j2zj I

where Ir+1 is given by equation (B-2).
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The potential of a dipole at the origin can be obtained by
a slight extension of equatinn (B-2). If we assume the dipole is made
up of two opo-itely charged particles, q and -q, located symmetrically
about the origin at t/2 and 4-/2, respectively, the resulting potential
using equation (B-2) is

d q q (B-6)

=Ir-c/2: tr+/21
By noting that

Silk'P4/21 - [(r*+t/2).(P+t/2)]1/2 _.(r+E.)/

(r(r4.+J1/2

ar2r

and substituting these results into equation (B-6), we get

d (" r= eq"--(B7

r3S ÷ +

It is customary to let c + 0 and q + - in such a way that qe remains
finite and is the point dipole moment p. Then equation (B-7) gives

d p r (-8)*• = -- , B B

r3

which can be and is taken as the potential at the field point r due to a+

dipole of moment p at the origin. The potential given in equation (B-8)
can be written in a more compat t and frequently more useful form using
equation (B-4) oa

d + 1
* _ -p.V . (B-9)

rII

B-2.2 Point Charge ai

We consider a point charge q now located at a point A from
the origin; we wish to evaluate the potential at the field point r.
Iten

+I 1 (B-10)

110

ilO



APPENDIX B

B-3. ATOMS AND MOLECULES

We now wish to find the energy of interaction of two charges in
the presence of a remotj polarizable +ion. The coordinate system is such
that the charges q, at rI and q 2 at r have a common origin. The polar-
izable ion of charge Q is located ai A such that R >> rI or r . The
electrostatic potential at r due to the charge q1, given by equation (a-
0) is

4 +

+- . (B-16)Ir 1-rI

We use two arguments in the potential to signify the source point,
r, and the field point, r. If there were no charges or sources other
than q, and q21 the energy of interaction would be

u(P1 t 2 ) q2,11,)j+.t
r2

(B-17)

1 1-21

a familiar result. Thus we can write the energy of a point charge, qi,
in a field whose sources are independent of qj as

U(ri) = qi(( ) (B-18)
I2~.

With these results the energy of the system due to the point charges

only is

ql1q 2 q IQ q 2Q
U a =+ q + - (B-19)

Irl-2I I-1I Ir-2 1

The energy given in equation (B-19) does not include the energy due to
the polarization of the ion at A. To evaluate the polarization energy
we must first find the dipole moinent induced in the ion. From equation4÷

(B-12) (with A = r•) we have for the potential at r due to qj:

= q1  , (B-20)r•r r

and from equation (B-13):
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E(r) - ql (B-21)

The dipole moment at in given by

p -s~r

(B-22)
r1

r- r

where a is the polarizability of the ion at R.

The potential at r due to this dipole at is given by equation
(B-14):

d + + ;_r(-3
4 (r) = -p

IA-+13

and the energy of interaction with the charge q 2 is
rl = q 2+(•)j (B-24)

r=r2

from equation (B-17). Substituting equations (B-23) and (B-22) into
equation (B-24), we have

ud(1 2) ' -- 21 q 2  (B-25)

which is symmetric in the two charges and positions. Thus, we could
have obtained the identical renult if we had used charge q 2 and its
field to find the induced dipole and evaluated the potential due to this+

dipole at r 1 . It is possible to extend these results to more compli-
cated systems, but if this is seriously intended the more elegant tech-
niques given by Judd1 should be used. The result given in equation (B-
25) was used to develop a two-electzcn crystal-field interaction2

following a suggestion of Judd.

1B. R. Judd, Math. Proc. Camb. Phil. Soc., 80 535 (1976).
2 C. A. Morrison, J. Chem. Phys. 72, 1001 (19•80).

113

A_.



APPENDIX 3

B-4. POSSIBLE APPLICATION TC (,AT ALYSIS

Perhaps a more important application of equation (B-25) is the
application of this result to the theory of homogeneous catalysis. In

homogeneous cata.lysis an inei:t gas (Q - 0 in eq (B-19)) is introduced
into a mixture of gases represented by q, and q 2 - We assume here that
q] and q 2 represent the charges on atoms 1 and 2 and the inert gas is to
speed up a desired compound formed by some combination of q, and q 2 "
The interaction energy given by equations (B-25) and (B-17) is

qlq2 q_(_-r__ _-r2

U(r1r 2 ) + ÷ 1 q2  + (B-26)

We see that if q, and q 2 are of the same sign, the interaction with the
catalyst at A is such as to reduce the repulsion. To apply equation (B-
26) to the present case we can take r = -r with no loss in generality,
and equation (B-26) becomes

U(, •) qlq 2  (_-_/2)__(_+_ 2)_B-27r -T qIq 2 1 _-/2131 , /21 (

÷ 4 4 + 4

with r = r - r 2 = 2rI, where r is the distance between atoms 1 and 2.

Thus if the two atoms have the same sign, the repulsive forces are
reduced; this reduction may be sufficient to allow the two atoms to get
close enough to permit electron exchange, which may be necessary to
speed up a desired compound formed by some combination of q, and q2.

B-5. ELECTROSTATIC POTENTIAL DUE TO MULTIPOLAR DISTRIBUTION

In much of our work we shall need the expression for the electrc-
static potential due to a distribution of multipolar moments. A
straightforward derivation of the desired results can be obtained by an
application of the simple laws of electrostatics given above. If we
have a charge distribution, p(x), at the origin of a coordinate system,
then the electric potential at A from the origin is

dý(r) = x (H-28)I÷÷x
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where dT is the volume element at x from the origin. The denominator
in equatfon (8-28) can be expanded in Legendre polynomials as

7 1 x P (Cos ~x ~(B-29)
T a= ý nxx

!•| I_-x1 n=O

+ + + +
where x i"s the angle between x and r and we have assumed Ir >> Vt
By Legenre's addition theorem,

n
P (cos e) V C (r)Ck (r) , (-3o)

n xr - nm nin
m =-n

A + + +

where x and r are unit vectors along x and r, respectively, and x-r =

Cos(Orx)* If we substitute equation (B-30) into equation (B-29), we
have

n A A
1 = Y -. Cn- (x)C* (r) . (B-31)

Ir-xl nm rn+1

In equation (B-31) we have dropped the limits on the sum, a technique we
shall use throughout unless the sums are restricted, in which case the
limits shall be explicitly given. If the result given in equation (B-
31) is substituted into equation (B-28) we have

(r= f d'•rpo) ) -L- -C (x)c* (r) (B-32)n+1 nm rim
nom r

Integrating the results in equation (B-32) produces

+ Q C* (r) (B-33)(r n+1 nmn,m r

where we have defined the multipolar moment as

Qnm xf P(W)xnCn(x) dTx (B-34)

* i The definition of the nth multipolar moment given in equation (B-34)
"agrees with the customary definition for n = 1 (dipole moment) but //

differs from a number of others for a = 2. Frequently Q2m is defined by

Q2m =f (+X)[2x 2 C (x)] dr (B-35)

we shall use only the definition given in equation (B-34).
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Since the electric potential is real, equation (8-33) can be

Q* C (r)written ÷Qmn
+nm nm (-6

( n+1 (B-36)
nm r

We shall use the form given by equation (B-33) or equation (B-36) de-
pending on which is the more convenient in a particular problem.

If the charge distribution p(x) is located at r from the origin,
the potential is given by

p(x) dT
f + + , (B-37)
lr+x

(-1)nQm C (r)
S= - ~ ' nmr.m-38)

n+1 (-8
nm r

a result which could have been obtained from equation (B-36) by letting

r + -r and notipg that Cnm(-r) = (-1)nCnm(r). It should be noted that
the replacement r + -r in equation (B-28) converts the denominator there
into the denominator in equation (B-37). o

+

We then have from equation (B-36) the electric potential at r due
to a charge distribution at the origin, and from equation (B-38), we
havr the electric potential at the origin due to a charge distribution
at r.

A second and independent definition of Qnm is given by

n = xnEnm (B-39)

where a is the nth-pole polarizability and Enm is the nth multipole-
inducing field. For n = 1 (dipole) we have

Q a El ' (B-40)
/

which is the spherical representation of the relative

p 4
p .a ,t (B-41)

where a = a 1 is the ordinary polarizability and E the ordinary electric
field. If we write the vector relations in equation (B-41) in spherical
form, we have
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" [ e*E1  (B-42)
m

and

m 1

(utsually Elm and P1m are written Em and pm.) Then, from equations (B-
* 42) and (B-41), we have

Plm 23 ajElm °(B-43)

The inducing multipolar field at a point can be obtained by a
suitable generalization of the electric potential at x in a uniform
field 9, that is,

which when written in spherical form is

im 1m

Thus we write the multipolar inducing field at as

o(A+ = -- X E*(RnCnin;,) , (B-45)

which agrees with equation (B-44) for n - 1. As an example of the use
of equation (B-45), we consider a point charge q0 at A whose potential
is!~q0

qT) (H-46)

We wish to find the multipolar expansion at the origin, thus:

O( +) 0
A-x

C_ (R)
- q0  r M XnC (x) (B-47)

The multipolar inducing field at the origin is given by comparing the
coefficients of xnCnm(x) in equations (B-47) and (B-45), that is,

Enm M - 10 (B-48)
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Similarly, if we have the charge q0 at the origin and wish the multi-
polar inducing field at A, the multipolar inducing field is

C (R)
Enm = _q 0 (_1)n n (B49)nmRn+1 B-9

If we have an ion at the origin whose nth-pole multipolarizability
is an the induced moment Qnm is given by

Qnm =c nEnm (B-50)

and from equation (B-48) we have

C (R)
nm 

(B-51)Qnm n- O Rn+1

The potential at the point r of this induced dipole at the origin is
given by equation (B-36) to obtain

C* (R) Cnmlr)
*(r) n- q 0  n rn+1 I (B-52)

where, to repeat, • is the position of the charge qo and r is the field
point.

The following+problem illustrates all of the above. Assume a
point charge q0 at r and a dielectric sphere of radius a at the origin
with dielectric constant e. The potential in the two regions is

*i(r) [ a* rnCn(r) , r < a

and

(r 4=q b* C (r)

--ýo(r) 0- + nm l , r <a

By equating the potential at r = a and the derivatives

3r' jr=a a° Ir=a

i
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(normal components of D are continuous), anm and bnm can be determined.
From equation (B-52) we have

anqoC (R)
b -~ n

nm Rn+l

if we take

(X=[n(c - 1)a 2n+1ll/(iEn + n + 1).

Notice that this an agrees with th3 an given by Judd1 (Judd's K is
our e).

If we assume that and a are known, then we can eliminate c
from an to obtain 2

3n an+

(n - (n-1)a 1 + (2n+1)a 3

which could be used to estimate the % for n > 1 for an ion whose a is
known and a might be taken as the ionic radius. Comparing equation (B-
52) with the expression for 4o we have

bnm =-%q 0Cnm(R)/Rn+1

1B. R. Judd, Math. Proc. Camb. Phil. Soc., 80 535 (1976).
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